М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Toma06000
Toma06000
15.03.2023 18:55 •  Алгебра

Докажите неравенство √35+√48< 13

👇
Ответ:
marjanazagurska
marjanazagurska
15.03.2023
√35 + √48= √83   13= √169   √83<√169  
вроде так. если нет-то прости)
4,7(20 оценок)
Ответ:
vikakivi1206
vikakivi1206
15.03.2023
Корень из 35 < 6.
Корень из 48 < 7.
Сложив полученные неравенства, мы докажем неравенство.
4,8(78 оценок)
Открыть все ответы
Ответ:
ppn01012014
ppn01012014
15.03.2023

Объяснение:

1) ОДЗ:  2x+1>0,  x>-1/2  u  3x-7>0,  x>7/3,  основания равны, 2x+1=3x-7,  x=8

2) ОДЗ:  x>0  u  x+2>0,  x>-2,  значит, x>0,  

log2 (x*(x+2))=3,   x^2+2x=2^3,  x^2+2x-8=0,   корни   х=2  и  х=-4(не

удовлетворяет ОДЗ),  отв. х=2

3)обозначим  lgx=t/  x>0,   t^2-3t+2=0,  t=1  u  t=2,  тогда,  lgx=1,  x=10,

lgx=2,  x=10^2=100,  отв:  10 и  100  (^ -знак степени)

1) ОДЗ:  4x+3>0,  x>-3/4,  т.к. основание >1, то  4x+3>16^ 1/2,

4x+3>4,  4x> 1,  x> 1/4

2) ОДЗ: х>0,  пусть  t=log4 x, тогда,  t^2-2t-3<0,  ,  корни  t=3  u  t=-1,

-1<t<3,   -1<log4 x<3,   1/4<x<4^3,   1/4<x<64

4,8(68 оценок)
Ответ:
timirshan
timirshan
15.03.2023
1)
2sin(x/2)=3sin²(x/2)
2sin(x/2)-3sin²(x/2)=0
sin(x/2) (2-3sin(x/2))=0

a) sin(x/2)=0
x/2=πk, k∈Z
x=2πk,  k∈Z

b)  2-3sin(x/2)=0
-3sin(x/2)=-2
sin(x/2)=2/3
x/2=(-1)^n * arcsin(2/3)+πk,  k∈Z
x=2*(-1)^n * arcsin(2/3)+2πk,  k∈Z

ответ: 2πk,  k∈Z;
            2*(-1)^k*arcsin(2/3)+2πk, k∈Z.

2)
sin6xcosx+cos6xsinx=0.5
sin(6x+x)=0.5
sin7x=0.5
7x=(-1)^k*(π/6)+πk,  k∈Z
x=(-1)^k*(π/42)+(π/7)*k,  k∈Z

ответ: (-1)^k*(π/42)+(π/7)*k,  k∈Z.

3)
3sinx+4sin(π/2+x)=0
3sinx+4cosx=0
3sin2*( \frac{x}{2} )+4cos2*( \frac{x}{2} )=0 \\ \\ &#10;3*2sin( \frac{x}{2} )cos( \frac{x}{2} )+4(cos^2( \frac{x}{2} )-sin^2( \frac{x}{2} ))=0 \\ \\ &#10;-4sin^2( \frac{x}{2} )+6sin( \frac{x}{2} )cos( \frac{x}{2} )+4cos^2( \frac{x}{2} )=0 \\ \\ &#10;2sin^2( \frac{x}{2} )-3sin( \frac{x}{2} )cos( \frac{x}{2} )+2cos^2( \frac{x}{2} )=0 \\ \\ &#10; \frac{2sin^2( \frac{x}{2} )}{cos^2( \frac{x}{2} )}- \frac{3sin( \frac{x}{2} )cos( \frac{x}{2} )}{cos^2( \frac{x}{2} )}+ \frac{2cos^2( \frac{x}{2} )}{cos^2( \frac{x}{2} )}=0
2tg^2( \frac{x}{2} )-3tg( \frac{x}{2} )-2=0 \\ \\ &#10;y=tg( \frac{x}{2} ) \\ \\ &#10;2y^2-3y-2=0 \\ &#10;D=9+4*2*2=25 \\ &#10;y_{1} =\frac{3-5}{4}=- \frac{2}{4}=- \frac{1}{2} \\ \\ &#10;y_{2}= \frac{3+5}{4}=2

a) При у=-1/2
tg( \frac{x}{2} )=- \frac{1}{2} \\ &#10; \frac{x}{2}=-arctg \frac{1}{2} + \pi k \\ \\ &#10;x=-2arctg \frac{1}{2}+2 \pi k,
k∈Z;

b)  При у=2
tg( \frac{x}{2} )=2 \\ &#10; \frac{x}{2} =arctg2+ \pi k \\ \\ &#10;x=2arctg2+2 \pi k,
k∈Z.

ответ: -2arctg \frac{1}{2}+2 \pi k,k∈Z;
             2arctg2+2 \pi k,k∈Z.
4,8(70 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ