Объяснение:
Задача №1.
Нам дан график линейной функции y = 5x - 1, а также точки: А(1;4), B(2;7).
Подставим значения иксов и игриков в формулу, задающую этот график:
4 = 5 * 1 - 1
4 = 4 - точка А принадлежит этому графику.
Подставляем значения второй точки в формулу:
7 = 5 * 2 - 1
7 не равно 9 - точка B не принадлежит этому графику.
Задача №2.
Здесь необходимо построить график функции. Как его строить? Чертим табличку, в первой строке - x, во второй - y. Подбирай любое значение x, потом это значение x подставляй в формулу y = -3x + 5, вычисляй.
Моя прямая пересекала только ось 0x в точке (1,5;0), ось 0y прямая не пересекла.
Задача №3.
Подставим значения в формулу y = kx
-2 = -1k
Решим линейное уравнение:
1k = 2
k = 2
График линейной функции построй сам. Примечание: график будет проходить через начало координат.
Задача №5.
Составим систему линейных уравнений:
Эту систему мы решаем методом сложения. У нас есть одинаковая переменная y, которую можно уничтожить путем вычитания. Следовательно, мы будем два уравнения вычитать.
Получаем:
0 = -2 - 3x - 1
Решаем линейное уравнение:
3x = -2-1+0
3x = -3 |:3
x = -1
x = -1
y = -2
: если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором
. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения
, два произвольных числа, но
. Пусть мы имеем функцию
, тогда вычисляем значения функции в этих двух точках, имеем
и
, так вот, если
, тогда функция возрастающая, если же
, то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)
, т.е. функция возрастающая. А вот задание с
не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной)
. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка):
, функция возрастает, что и требовалось доказать.