М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
iltubaevapg
iltubaevapg
16.05.2020 17:09 •  Алгебра

Запишите два числа одновременно являющиеся : рациональными и отрицательными целыми и кратными 5 целыми и положительными простыми и большими 50

👇
Ответ:
gghvagsh167
gghvagsh167
16.05.2020
-5.46 и -0.535 - рациональные и отрицательные
5 и -10 -целые и кратные 5
100 и 500002 - целые и положительные (натуральные)
53 и 59 -- простые и больше 50
4,4(63 оценок)
Открыть все ответы
Ответ:
ivanov2397
ivanov2397
16.05.2020

tg2x-sec2x

Объяснение:

умножим числитель и знаменатель первой дроби на sinx-cosx

тогда числитель (sinx-cosx)²,знаменатель sinx²-cosx²

Раскроем числитель по ФСУ тогда sinx²+cosx²-2sinxcosx, а в знаменателе вынесем -1, тогда cosx²-sinx² по ОТТ и формуле двойного угла для синуса числитель равен 1-sin2x, а знаменатель по формуле двойного угла для косинуса равен -cos2x. Почленно поделим на -cos2x, тогда получим tg2x-1/cos2x, по определению, величина обратная косинусу есть секанс, окончательно получаем tg2x-sec2x

4,4(37 оценок)
Ответ:
Примем за базу индукции n=5. Проверим истинность выражения при n=5:
2^5\ \textgreater \ 5*5+1 \\ 32\ \textgreater \ 26
Получили верное неравенство => базис доказан. 

Теперь предположим, что неравенство справедливо при некотором n=k>=5, т.е. выполняется: 
2^k\ \textgreater \ 5k+1 .
Доказав истинность выражения при n=k+1, в соответствии с принципом математической индукции, мы докажем и истинность выражения при n>=5.
\\2^{k+1}\ \textgreater \ 5*(k+1)+1\\
Используем наше предположение:
2^k\ \textgreater \ 5k+1 => 2^k*2\ \textgreater \ 2*(5k+1) => 2*(5k+1)\ \textgreater \ 5k+6
10k+2\ \textgreater \ 5k+6

Проверим истинность последнего неравенства:
10k+2\ \textgreater \ 5k+6\\5k\ \textgreater \ 4
k\ \textgreater \ 0.8

Т.е. последнее неравенство верно для всех k>0.8, но, по нашему предположению, k>=5, а значит, выражение истинно при всех n=k+1, что и требовалось доказать.  
4,6(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ