b₁ = 4
q = -2
b₂ = b₁ * q = 4 * (- 2) = - 8
b₃ = b₂ * q = - 8 * (- 2) = 16
b₄ = b₃ * q = 16 * (- 2) = - 32
ответ : 4 ; - 8 ; 16 ; - 32 ...
Объяснение:
Последовательность называется возрастающей, если для любого n∈N выполняется неравенство yn<yn+1.
Последовательность называется убывающей, если для любого n∈N выполняется неравенство yn>yn+1.
Выпишем n-й и n+1-й члены последовательности: yn=n213n, yn+1=(n+1)213n+1.
Чтобы сравнить эти члены, составим их разность и оценим её знак:
yn+1−yn=(n+1)213n+1−n213n=(n2+2n+1)−13n213n+1=2n+1−12n213n+1
Для натуральных значений n справедливы неравенства 2n≤6n2 и 1<6n2.
Сложив их, получим 1+2n<12n2, т.е. для любых натуральных значений n справедливо неравенство 2n+1−12n213n+1<0, значит, yn+1−yn<0.
Итак, для любых натуральных значений n выполняется неравенство yn+1<yn,
а это значит, что последовательность (yn) убывает.
1)10 (км/час) - скорость на велосипеде.
2)8 (см) - длина основания;
10 (см) - длина боковой стороны.
Объяснение:
1. Турист преодолел расстояние в 29 км. 2 часа он ехал на велосипеде,
затем 3 часа шёл пешком. Скорость на велосипеде больше скорости
пешком на 7 км. Найти скорость движения на велосипеде.
х - скорость пешком
х+7 - скорость на велосипеде
3*х - путь пешком
(х+7)*2 - путь на велосипеде
По условию задачи весь путь 29 км, уравнение:
3х+2(х+7)=29
3х+2х+14=29
5х=29-14
5х=15
х=15/5
х=3 (км/час) - скорость пешком
3+7=10 (км/час) - скорость на велосипеде.
2 Периметр равнобедренного треугольника 28 см. Боковая сторона
на 2 см больше основания . Найти стороны РАВНОБЕДРЕННОГО
треугольника.
х - длина основания
х+2 - длина боковой стороны
Периметр треугольника - это сумма длин всех сторон треугольника. Так как треугольник равнобедренный, в нём боковые стороны равны.
По условию задачи периметр треугольника 28 см, уравнение:
х+2(х+2)=28
х+2х+4=28
3х=28-4
3х=24
х=24/3
х=8 (см) - длина основания
8+2=10 (см) - длина боковой стороны.