вот так G=FR^2/m1m2
2)D=36+160=196
x1=(6+14)/2=10; x2=(6-14)/2=-4
cosx+sinx=0
умножу все на √2/2
√2/2*cosx+√2/2*sinx=0
sin(pi/4+x)=0
pi/4+x=pin
x=-pi/4+pin (n∈Z)
лишние корни могут появиться только в левом трехчлене, они могут нарушить ОДЗ подкоренного выражения, которое должно быть неотрицательным. Подставлю их и проверю это...
x1=10, вспомним. что pi=3.14, значит 10=3pi+0.58 примерно, это четвертая координатная четверть, там и синус и косинус отрицательные, значит подкоренное выражение отрицательно, что недопустимо. Поэтому x1=10 не подходит
x2=-4=-pi-0.86-вторая координатная четверть. там синус положителен, косинус отрицателен . Причем . суды по значению , х2 находится в интервале между pi/2 и pi/2+pi/4-где значение синуса превосходит по модулю значение косинуса. поэтому подкоренное выражение будет положительно.
ответ x={-4; -pi/4+pn;n∈Z}
1) выражаешь cosx
cosx=-1/2
смотришь по окружности
x=2п/3 +2пk, k принадлежит Z
x=-2п/3 +2пk, k принадлежит Z
Это и есть наш ответ: {2п/3 +2пk;-2п/3 +2пk}
2) sin2x - 3sinxcosx + 2cos2x = 0
формула sin2x=2sinxcosx
cos2x=cosx^2-sinx^2
подставляем в наше уравнение
2sinxcosx- 3sinxcosx + 2(cosx^2-sinx^2)=0
-sinxcos+2cosx^2-2sinx^2=0 делим всё уравнение на cosx^2
получаем
-tgx+2-2tgx^2=0
Пусть tgx=t
2t^2+2-2=0
Решаем квадратное уравнение, находим t,
Затем подставляем в уравнение tgx=t , и находим отсюда x, с нашей окружности.
G=FR^2/m1m2