Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
Так как вопрос архивный, то вместо удалённого решения вставляю свое. Примем за 1 объём бассейна. Пусть через 3-ю трубу бассейн наполняется за x часов, значит, через 1-ю трубу он наполнится за x+8 часов, а через 2-ю - за x+8-6=x+2 часов. 1/x - скорость наполнения бассейна через 3-ю трубу, 1/(x+2) - скорость наполнения через 2-ю трубу и 1/(x+8) - через 1-ю. Так как при одновременно открытых 1-й и 2-й трубе бассейн наполняется за то же самое время, что при открытой только 3-й трубе,то 1/(x+2)+1/(x+8)=1/x. Умножая обе части этого уравнения на x(x+2)(x+8), получим x(x+8)+x(x+2)=(x+2)(x+8); x^2+8x+x^2+2x=x^2+10x+16; 2x^2+10x=x^2+10x+16: x^2=16, и так как x>0, то x=4. Таким образом через одну 3-ю трубу бассейн наполняется за 4 часа, через одну 2-ю трубу - за 4+2=6 часов, и через одну 1-ю - за 4+8=12 часов. Проверка: 1/6+1/12=1/4, 2/12+1/12=3/12. ответ: Через одну третью трубу бассейн наполняется за 4 часа.
1=1^2
1+3=2^2
1+3+5=3^2
1+3+5+7=4^2
1+3+5+7+...+999=((999+1)/2)^2=500^2=250 000
иначе разобьем данную сумму на пары сумм
1+999=1000
3+997=1000
499+501=1000
всего таких сумм (499+1):2=250
поэтому общая сумма равна 250*1000=250 000
либо используя формулу арифмитеческой прогрессии
a[1]=1; a[n]=999; d=2
n=(a[n]-a[1])/d+1
n=(999-1)/2+1=500
S[n]=(a[1]+a[n])/2 *n
S[500]=(1+999)/2*500=250 000