М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
FOBL
FOBL
29.04.2020 18:40 •  Алгебра

Найти наименьшее значение а, при котором имеет решения уравнение. 0,5(sinx+sqrt3cosx)=8-7a-2a^2

👇
Ответ:
МарияLevkivska
МарияLevkivska
29.04.2020

Согласно формуле сложения гармонических колебаний

sin x + √3 * cos x = 2 * sin (x + π/3)

Тогда уравнение принимает вид

sin (x+π/3) = 8 - 7 * a - 2 * a² = 14,125 - (6,125 + 7 * a + 2 * a²) =

14,125 - 2 * (a² +3,5 * a + 3,0625) = 14,125 - 2 * (a + 1,75)²

Поскольку значение синуса лежит в пределах от -1 до 1, то

-1 ≤ 14,125 - 2 * (a + 1,75)² ≤ 1 ,  откуда

6,5625 ≤ (a + 1,75)² ≤ 7,5625

Итак,  √6,5625 ≤ а + 1,75 ≤ 2,75   или  -2,75 ≤ а + 1,75 ≤ -√6,5625 .  Тогда

           √6,5625 - 1,75 ≤ а ≤ 1   или  -4,5 ≤ а ≤ -√6,5625 - 1,75

Следовательно, минимальное значение параметра, при котором уравнение имеет решение  а = -4,5

 

 

4,7(62 оценок)
Открыть все ответы
Ответ:
Elyzaveta1
Elyzaveta1
29.04.2020

Средняя скорость первого туриста:

r/2 + √((r²/4) +sr/4n);

Средняя скорость второго туриста:

- (r/2 - √((r²/4) +sr/4n))

Объяснение:

Пусть х и у - скорости движения первого и второго туристов, а t - время их движения, если бы они шли с одинаковой скоростью, тогда:

s/x = t-n - фактическое время движение первого туриста,    (1)

s/y = t+3n - фактическое время движения второго туриста.  (2)

Из второго уравнения вычтем первое:

s/y - s/x = t+3n - (t-n)

s/y - s/x = t+3n - t+n

s(1/y - 1/x) = 4n

s[(х-у)/ху] = 4n            (3)

так как (х-у) = r (согласно условию),    (4)

то подставим (4) в (3):

sr/ху = 4n

ху = sr/4n              (5).

Согласно теореме Виета, сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а их произведение равно свободному члену.

Обозначим переменную v.

Тогда приведённое квадратное уравнение c учетом (4) и (5) имеет вид:

v² - rv - sr/4n = 0,      (6)

так как

х + (-у) = r

х· (-у) = - sr/4n.    

Соответственно скорости равны:

v₁ = х = r/2 + √((r²/4) +sr/4n)

v₂ = - y = - (r/2 - √((r²/4) +sr/4n))

ответ: средняя скорость первого туриста:

r/2 + √((r²/4) +sr/4n);

средняя скорость второго туриста:

- (r/2 - √((r²/4) +sr/4n))

ПРИМЕЧАНИЕ

Корректность выполненного решения можно проверить на конкретном примере.

Пусть расстояние = 60 км, расчетная скорость = 5 км/час.

Расчетное время = 12 часов.

Фактическая скорость первого = 6 км час.

Фактическое время движение первого = 10 часов.

Фактическое время движения второго = 18 часов.

Скорость второго =  3 1/3 км час

r = 6 - 3 1/3 = 2 2/3

n = 2

s = 60

Находим корни: 6 и 3 1/3.

4,7(18 оценок)
Ответ:
YankaManky
YankaManky
29.04.2020

Відповідь:

7,92 × 10^28 бактерий.

Пояснення:

Есть одна бактерия, которая через полчаса делится на две. Была одна - стало две. Значит попытка применить формулу для суммы геометрической прогрессии в корне не верна. Если бы после деления на две первоначальная бактерия оставалась, то есть была одна она поделилась на две и сама осталась - стало три, тогда считайте сумму геометрической прогрессии. А в нашем случае результат 2 в степени n, где n = 48 × 2. Вторая ошибка: Вы берете 2 в 48 степени, а надо в 96, так как, за 48 часов происходит 96 процессов деления, через каждые полчаса.

В результате через 0,5 часа - 2 бактерии, через час - 4 бактерии, через 1,5 часа - 8 бактерий, через 2 часа - 16 бактерий и так далее. Число бактерий четное, так как начиная с первого деления начальная бактерия делится на два ( и сама не остается ) то есть через 0,5 часа и далее - число бактерий четное.

Число бактерий равно

2^96 = 7,92 × 10^28

Если считать по часам

4^48 = 7,92 × 10^28

4,8(57 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ