Пусть за t₁=х часов проезжает расстояние между городами 1-ый поезд. Тогда за t₂=(20-х) часов проезжает 2-ой поезд.
Пусть s - расстояние между городами. тогда v₁=s/t₁=s/x - скорость первого поезда а v₂=s/t₂=s/(20-x) - скорость второго. Скорость их сближения v₃=v₁+v₂ = s/x + s/(20-x) Тогда время, через которое они встреться t(v)=s/v₃ и по условию это равно 4часа 48 минут.
Переведём это время в часы. 4ч48м = 4 48/60ч = 4 12/15ч = 72/15ч
Доказательство от противного -метод локазательства теоремы, при котором доказывают не саму теорему, а теорему противоположную обратной. Этот метод применяют тогда, когда прямую теорему доказать или невозможно или очень затруднительно. При этом доказательстве заключение теоремы заменяют отрицанием и рассуждениями к отрицанию условия, то есть к противоркчию, что и доказывает теорему Пример. Теорема. Из одной точки К к прямой можно провести только один перпендикуляр Док-во. Пусть из точки К на прямую провели два перепндикуляра КА и КВ. Тогда угол КАВ =90 и угол КВА =90 по определению перпендикуляра Тогда в тр=ке АКВ сумма этих углов уже больше 180, что противоречит теореме о сумме углов тр-ка. . Это противоречие и доказывает истинность первоначального ктверждения
1-х≥0⇒х≤1
х²+1≥0⇒х-любое
ответ х=1