Для начала найдём частные производные 1-ого порядка. Всего их 3(т.к. 3 переменные).
Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру: Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.
Теперь частные производные второго порядка. Рассмотрим производную по х. Во второй раз мы может взять её опять же по 3 переменным.
Теперь рассматриваем производную по у. Её 2-уй производную берём снова по 3-ём переменным.
Заметим что: Такие равенства выполняются и для других смешанных производный, то есть:
И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
Требуется найти критические точки функции, которые определяются производной, приравненной к 0: y' = x²-2x = х(х-2) = 0. Отсюда 2 корня: х₁ = 0 х₂ = 2. Теперь надо определить, где минимум, а где максимум, Если при прохождении через критическую точку производная меняет знак с минуса на плюс, то есть это будет минимум, а если меняет знак с плюса на минус, соответственно это будет максимум. Найдём значения производной при х = -1 и х = 1 х = -1 y' = (-1)²-2*(-1) = 1+2 = 3. x = 1 y' = 1²-2*1 = 1-2 = -1. Знак меняется с + на - (это максимум). Так же надо поступить и с второй точкой. В приложении даётся график для наглядности определения точек.
ОДЗ:
{х+1 ≥0⇒х≥-1
{x≠0
При
неравенство верно при любом х из ОДЗ
x∈[-1;0) - решение неравенства
При
, т.е при x>0 возводим обе части неравенства в четвертую степень:
Решаем неравенство графически:
См. рис.
Строим графики y=
( красного цвета)
при x >0
кривая убывает.
Строим y=x+1 это прямая синего цвета, возрастает на (-∞;+∞)
Кривая и прямая пересекаются в одной точке, это х=15
Поэтому неравенство верно при x > 15
О т в е т. [-1;0) U (15;+∞)