На плане указано, что прямоугольная комната имеетплощадь 15,7 кв.м. точные измерения показали, чтоширина комнаты равна 3,2 м, а длина 5 м. насколько квадратных метров площадь комнатыотличается от значения, указанного в плане?
Поскольку модуль слева это модуль от суммы положительного числа 3 и модуля, то большой модуль положителен и раскрывается как уравнение вида abs(x+2)+3=4 и решается как abs(x+2)=1 и x+2=1 или x-2=-1. а если бы у тебя было бы уравнение abs(abs(x+2)-3)=4, то пришлось бы рассмотреть уравнения abs(x+2)=4 и abs(x+2)=-4 только когда у тебя по модулем находится сумма положительного числа и модуля от выражения, содержащего переменную x ты рассматриваешь уравнение в варианте (заменяешь скобки модуля на обычные скобки) поскольку при сложении положительного числа и модуля какого-либо выражения их сумма не может быть отрицательна.
Рисунок к заданию - во вложении 1. Проведем прямую через точки В и С. 2. Точку А соединим с точкой С.. 3.Вокруг отрезка [AC] нарисуем прямоугольник 1 × 2, в котором [AC] является диагональю и делит данный прямоугольник на 2 равных прямоугольныз треугольника. 4. Имеем прямоугольный треугольник с катетами длины 1 и 2 и гипотенузой [AC]. 5. По формуле Пифагора вычисляем длину гипотенузы: 1²+2²=[AC]² => [AC]²=5 => [AC]=√5 ответ:Расстояние от точки А до прямой ВС равно √5≈2.2 клетки
2) 16-15,7=0,3(м²) - на столько м² приблизительное площадь указанная на плане меньше точной площади комнаты