Построим график функции у = 8 + 2x - x²
Для этого преобразуем её к виду
у = -(х² - 2х + 1) + 9
у = -(х - 1)² + 9
Видим, что парабола у = -х² сдвинута по оси абсцисс на 1 вправо и на 9 вверх. То есть её вершина находится в точке с координатами (1; 9).
Найдём координаты точек пересечения параболы с осью ординат.
При х = 0 у = 8
И координаты точек пересечения параболы с осью абсцисс
у = 0
- х² + 2х + 8 = 0
D = 2² - 4 · (-1) · 8 = 36
√D = 6
х₁ = -0,5(-2 - 6) = 4
х₂ = -0,5(-2 + 6) = -2
Итак мы получили ещё две точки параболы (4; 0) и (-2; 0).
Строим параболу (веточки её опущены вниз).
Смотри прикреплённый рисунок.
1) по графику видим, что функция убывает на интервале х ∈ [1; +∞)
2) множество решений неравенства 8 + 2x - x^2 ≤ 0 есть объединение двух интервалов х∈ (-∞; -2] ∪ [4; +∞)
ответ:
cost=(x–2)/3
{sint=(y–3)/2
возводим в квадрат и складываем
это эллипс.
(x–2)2/9+(y–3)^/4=1
этот эллипс равновелик эллипсу
(x2/9)+(y2/4)=1
параметрическое уравнение которого
{x=3cost
(y=2sint
[0; 3] на оси ох получаем
если t1=π/2 и t2=0
в силу симметрии достаточно вычислить четвертую часть искомой площади, результат умножить на 4.
s=4·∫0π/2 y(t)·xtdt=
= –4∫π/2 0 (2sint)·(–3sint)dt= 24∫π/2 0 (sin2t)dt=
= 24∫π/2 0 (1–cos2t)/2dt=
=12t|π/2 0 –(3sin2t)|π/2 0 =6π