Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Имеем 4 места для размещения цифр. Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Девятку можно поставить на любое из четырёх мест На остальные места размещаем оставшиеся цифры, учитывая, что все они должны быть различны, получаем: на первое из трёх оставшихся мест можно поставить любую их 9-ти цифр (девятку нельзя, остаётся 10-1=9 цифр); на второе из оставшихся мест ставим любую из оставшихся 8-ми цифр; на третье - любую из оставшихся семи цифр. Перемножаем полученное количество расстановки: 4*9*8*7=2016 ответ: Ване придётся перебрать 2016 номеров.
чтобы найти наименьешее, надо взять x=1
подставляешь и находишь y
чтобы найти наибольшее, надо взять x=9
подставляешь и находишь y