все просто тут две дроби приводят к общему знаменателю: у 2 и 9 - это 18, потом мы узнаем "дополнительные множители", то есть общий знаменатель делим на знаменатель каждой дроби: 18:2=9 - дополнительный множитель первой дроби, 18:9=2 - дополнительный множитель второй дроби. теперь мы и числитель, и знаменатель каждой дроби умножаем на её дополнительны множитель: 1×9=9 - числитель первой дроби, 2×9=18 - знаменатель первой дроби; 3×2=6 - числитель второй дроби, 9×2=18 - знаменатель второй дроби. потом мы из числителя первой дроби вычитем числитель второй дроби: 9-6=3 - числитель новой дроби, а знаменатель оставляем прежний, и у нас получается 3/18, но мы можем сократить на 3, и получаем: 3:3=1, 18:3=6, в итоге мы получаем дробь 1/6
Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
1) a=5, b=-9, c=-2
D=9*9+4*2*5=121
Два корня, тк D>0
2)a=1, b=-1, c=-20
D=1+4*20=81
Два корня, тк D>0
3) a=16, b=-8, c=1
D=64-4*16=0
Один Корень, тк D=0