8
Объяснение:
Складывая данные уравнения , получим : x² +y² = 4(x+y) ( 1 )
пусть x + y = a ⇒ y = a-x , подставим в ( 1 ) вместо y ( a -x ) :
x² +( a-x)² - 4a = 0 или : 2x² -2ax +a²-4a = 0 ( 2 )
уравнение (2) имеет решение , если D/4 ≥ 0 или :
a² -2(a² -4a) ≥ 0 ⇔ a² -8a ≤ 0 ⇔ 0 ≤ a ≤ 8 ⇒ наибольшее a , при
котором уравнение ( 2 ) имеет решение равно 8 ⇒ a ≤ 8 ;
проверкой убеждаемся , что пара ( 4 ; 4) является решением
системы и мы доказали , что x+y ≤ 8 ⇒ 8 - наибольшее
значение суммы (x+y)
(6√cos x - 1)(5cos x + 4)=0
6√cos x = 1
cos x = 1/36
x1=±arccos(1/36) + 2πn,n ∈ Z
5cos x = -4
x2=±arccos(-4/5) + 2πn, n ∈ Z
y1=cos(±arccos(1/36) + 2πn)
y2=cos(±arccos(-4/5) + 2πn)