М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
atleti09oz3yfh
atleti09oz3yfh
26.03.2022 15:21 •  Алгебра

Вавтобусе было 5 свободных мест. на остановке никто не вышел, но вошли 7 чел. свободных мест осталось 2. сколько чел из вошедших осталось стоять

👇
Ответ:
darusascop1415
darusascop1415
26.03.2022
Так как свободных мест осталось два,значит трое сели и мы должны от семи отнять три 
7-3=4(чел.)- осталось стоять 
ответ: 4 человека
4,6(69 оценок)
Открыть все ответы
Ответ:
5class1i
5class1i
26.03.2022

Определение 1. Функцию y = f(x), xN называют функцией натурального аргумента или числовой последовательностью и обозначают: y = f(n) или y1, y2, y3, ..., yn, ... или (yn).

В данном случае независимая переменная – натуральное число.

задания числовой последовательности.

Словесный .

Правила задания последовательности описываются словами, без указания формул или когда закономерности между элементами последовательности нет.

Пример 1. Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, .

Пример 2. Произвольный набор чисел: 1, 4, 12, 25, 26, 33, 39, ... .

Пример 3. Последовательность чётных чисел 2, 4, 6, 8, 10, 12, 14, 16, ... .

Аналитический .

Любой n-й элемент последовательности можно определить с формулы.

Пример 1. Последовательность чётных чисел: y = 2n.

Пример 2. Последовательность квадрата натуральных чисел: y = n2;

1, 4, 9, 16, 25, ..., n2, ... .

Пример 3. Стационарная последовательность: y = C;

C, C, C, ..., C, ... .

Частный случай: y = 5; 5, 5, 5, ..., 5, ... .

Пример 4. Последовательность y = 2n;

2, 22, 23, 24, ..., 2n, ... .

Рекуррентный .

Указывается правило, позволяющее вычислить n-й элемент последовательности, если известны её предыдущие элементы.

Пример 1. Арифметическая прогрессия: a1=a, an+1=an+d, где a и d – заданные числа, d - разность арифметической прогрессии. Пусть a1=5, d=0,7, тогда арифметическая прогрессия будет иметь вид: 5; 5,7; 6,4; 7,1; 7,8; 8,5; ... .

Пример 2. Геометрическая прогрессия: b1= b, bn+1= bn q, где b и q – заданные числа, b 0, q0; q – знаменатель геометрической прогрессии. Пусть b1=23, q=½, тогда геометрическая прогрессия будет иметь вид: 23; 11,5; 5,75; 2,875; ... .

Пример 3. Последовательность Фибоначчи. Эта последовательность легко задаётся рекуррентно: y1=1, y2=1, yn-2+yn-1, если n=3, 4, 5, 6, ... . Она будет иметь вид:

1, 1,2, 3, 5, 8, 13, 21, 34, 55, ... .

Аналитически последовательность Фибоначчи задать трудно, но возможно. Формула, по которой определяется любой элемент этой последовательности, выглядит так:

3.2. Закрепление нового материала. Решение задач.

Для закрепления знаний выбираются примеры в зависимости от уровня подготовки учащихся.

Пример 1. Составить возможную формулу n-го элемента последовательности (yn):

а) 1, 3, 5, 7, 9, 11, ...;

б) 4, 8, 12, 16, 20, ...;

Решение.

а) Это последовательность нечётных чисел. Аналитически эту последовательность можно задать формулой y = 2n+1.

б) Это числовая последовательность, у которой последующий элемент больше предыдущего на 4. Аналитически эту последовательность можно задать формулой y = 4n.

Пример 2. Выписать первые десять элементов последовательности, заданной рекуррентно: y1=1, y2=2, yn = yn-2+yn-1, если n = 3, 4, 5, 6, ... .

Решение.

Каждый последующий элемент этой последовательности равен сумме двух предыдущих элементов.

y1=1;

y2=2;

y3=1+2=3;

y4=2+3=5;

y5=3+5=8;

y6=5+8=13;

y7=8+13=21;

y8=13+21=34;

y9=21+34=55;

y10=34+55=89.

Пример 3. Последовательность (yn) задана рекуррентно: y1=1, y2=2, yn= 5 yn-1- 6yn-2. Задать эту последовательность аналитически.

Решение.

Найдём несколько первых элементов последовательности.

y1=1;

y2=2;

y3=5y2-6y1=10-6=4;

y4=5y3-6y2=20-12=8;

y5=5y4-6y3=40-24=16;

y6=5y5-6y4=80-48=32;

y7=5y6-6y5=160-96=64.

Получаем последовательность: 1; 2; 4; 8; 16; 32; 64; ..., которую можно представить в виде

20; 21; 22 ; 23 ; 24 ; 25 ; 26 ... .

n = 1; 2; 3; 4; 5; 6; 7... .

Анализируя последовательность, получаем следующую закономерность: y = 2n-1.

Пример 4. Дана последовательность yn=24n+36-5n2.

а) Сколько в ней положительных членов?

б) Найти наибольший элемент последовательности.

в) Есть в данной последовательности наименьший элемент?

Решение.

Данная числовая последовательность – это функция вида y = -5x2 +24x+36, где x

а) Найдём значения функции, при которых -5x2 +24x+36>0. Решим уравнение -5x2 +24x+36=0.

D = b2-4ac=1296, X1=6, X2=-1,2.

Уравнение оси симметрии параболы y = -5x2 +24x+36 можно найти по формуле x=, получим: x=2,4.

- + -

-1,2 6

Неравенство -5x2 +24x+36>0 выполняется при -1,2 В этом интервале находится пять натуральных чисел (1, 2, 3, 4, 5). Значит в заданной последовательности пять положительных элементов последовательности.

б) Наибольший элемент последовательности определяется методом подбора и он равен y2=64.

в) Наименьшего элемента нет.

Объяснение:

4,4(85 оценок)
Ответ:
Aki1Nozomi
Aki1Nozomi
26.03.2022

В решении.

Объяснение:

Решить неравенство:

1) 2х + 5 > 7x - 10

2x - 7x > -10 - 5

-5x > - 15

5x < 15     знак неравенства меняется при делении на минус

x < 15/5

x < 3;

Решение неравенства: х∈(-∞; 3).

Неравенство строгое, скобка круглая, а знаки бесконечности всегда с круглой скобкой.

2) 2(3х + 7) - 8(х + 3) <= 0

6x + 14 - 8x - 24 <= 0

-2x - 10 <= 0

-2x <= 10

2x >= -10     знак неравенства меняется при делении на минус

x >= -5;

Решение неравенства: х∈[-5; +∞).

Неравенство нестрогое, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.

3) (х + 3)/4 - х/2 >= 3

Умножить все части неравенства на 4, чтобы избавиться от дроби:

х + 3 - 2х >= 12

-x >= 12 - 3

-x >= 9

x <= -9       знак неравенства меняется при делении на минус

Решение неравенства: х∈(-∞; -9].

Неравенство нестрогое, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.

Решить систему неравенств:

1) 3 - х <= 5

   4x - 2 < 8

-x <= 5 - 3

4x < 8 + 2

-x <= 2

4x < 10

x >= -2      знак неравенства меняется при делении на минус

x < 2,5

Решение первого неравенства: х∈[-2; +∞);

Решение второго неравенства: х∈(-∞; 2,5).

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.  

Чертим числовую ось, отмечаем значения - бесконечность, -2, 0, 2,5, + бесконечность.  

х∈[-2; +∞) - штриховка от -2 вправо до + бесконечности, кружок у -2 закрашенный.  

х∈(-∞; 2,5) - штриховка от - бесконечности вправо до 2,5.

Пересечение х∈[-2; 2,5) (двойная штриховка), это и есть решение системы неравенств.

2) 2(х + 3) - 3(х - 2) > 0

   2x + 3(2x - 3) <= 7

2x + 6 - 3x + 6 > 0

2x + 6x - 9 <= 7

-x + 12 > 0

8x - 9 <= 7

-x > -12

8x <= 16

x < 12       знак неравенства меняется при делении на минус

x <= 2

Решение первого неравенства: х∈(-∞; 12);

Решение второго неравенства: х∈(-∞; 2].  

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.  

Чертим числовую ось, отмечаем значения - бесконечность, 0, 2, 12.  

х∈(-∞; 12) - штриховка от - бесконечности  вправо до 12.  

х∈(-∞; 2] - штриховка от - бесконечности вправо до 2, кружок у 2 закрашенный.

Пересечение х(-∞; 2] (двойная штриховка), это и есть решение системы неравенств.  

4,5(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ