Мы знаем, что функция y = sinx принимает положительные значения на промежутке (0; π) и отрицательные на (π; 2π). Также график функции y = sinx возрастает на [0; π/2], убывает на [π/2; π] Мы знаем, что π ≈ 3,14 π/2 ≈ 3,14:2 = 1,57
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины AB и AC: используем формулу:
находим координаты точки K:
теперь определим вид треугольника для этого используем теорему косинусов: для начала найдем длину BC:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
подставим значения:
cosB<0 поэтому угол тупой и треугольник тупоугольный ответ: треугольник тупоугольный