Научные методы обучения математике – это методы, направленные на организацию сознательной математической деятельности учащихся, посредством осуществления адекватных мыслительных операций. Научные методы подразделяются на: чувственные: восприятие, наблюдение, опыт теоретические: анализ, сравнение, обобщение, синтез и т.д. формально-логические: дедуктивные, индуктивные и т.д. Учебные методы обучения математике – методы, разработанные специально для обучения детей в средних общеобразовательных школах, направлены на эффективность обучения. Включают в себя такие методы как эвристические, методы программирования, обучение на моделях и т.п.
Объяснение:
Площадь фигуры может быть вычислена через определённый интеграл.
График функции y=3x² - 2 - квадратная парабола веточками вверх. Вершина параболы находится в точке А(0; -2). Парабола пересекает ось х в двух точках:
х₁ = -√2/3 ≈ -0,816
х₂ = √2/3 ≈ 0,816
Найдём пределы интегрирования
При х = 1 y=3x² - 2 = 1
Эта точка находится правее нуля функции в точке х₂ ≈ 0,816, т.е. в области положительных у, поэтому нижний предел х = 1, ну, а верхний предел, естественно, х = 2.
Интегрируем: ∫(3x² - 2)dx = x³ - 2x.
Подставляем пределы:
S = (2³ - 2·2) - (1³ - 2·1) = 4+1 = 5
ответ: Площадь фигуры равна 5
1,5x - скорость легкового автомобиля
2*x=1,5x+20
2x-1,5x=20
0,5x=20
x=40
1,5x=40*1,5
x=60
ответ: скорость легкового автомобиля - 60 км/ч