Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число. а2=а1+d a3=а1+d+d
a1+а1+d+а1+d+d=18 3a1+3d=18 3*(a1+d)=18 a1+d=18/3 а1+d=6 - второй член арифм. прогрессии также арифм. прогрессию можно записать как: а1+а2+а3=18 а1+а3+6=18 а1+а3=12 а1=12-а3(это наша будущая подстановка) b2=6+3 b2=9 - второй член геометр. прогрессии теперь воспользуемся свойством геометр. прогрессии (bn)^2=b(n-1)*b(n+1) n-1 и n+1 номер члена прогрессии (b2)^2=(a1+1)*(a3+17) 9^2=(a1+1)*(a3+17) 81=(a1+1)*(a3+17) теперь вводим систему: 81=(a1+1)*(a3+17) а1=12-а3 в 1 уравнение подставим второе 81=(12-а3+1)*(a3+17) 81=(13-а3)*(a3+17) пусть а3=х 81=(13-х)*(х+17) 81=13х +221-х^2-17x 81=-x^2-4x+221 x^2+4x-221+81=0 x^2+4x-140=0 по т. виета х1+х2=-4 х1*х2=-140 х1=10 х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая) 10=а3 18=10+6+а1 а1=2 ответ: 2,6,10
Пусть скорость течения воды по подающей трубе = х а скорость течения по отводящей трубе - у Тогда время наполнения = 1/х часов, а время "опорожнения" = 1/у часов. Зная, что через первую трубу бассейн наполняется на 2 часа больше, чем через вторую опорожняется и что при заполненном на одну треть (1\3) бассейне, оноказался пустым спустя 8 часов, составим систему уравнений:
1/х = 1/у + 2 |*ху 1/3 + 8х - 8у = 0 |*3
у - х - 2ху = 0 1 + 24х - 24у = 0
выразим из второго уравнения х: 24х = 24у - 1 х = у - 1/24
подставим в первое уравнение: у - (у-1/24) - 2у(у - 1/24) = 0 у - у + 1/24 - 2у^2 + 1/14у = 0 |*24 48у^2 - 2у - 1 = 0 у1 = 1/6 у2 = - 12/96 (не удовл. усл. задачи)
х = у - 1/24 х = 1/8
время наполнения - 1/х = 1/(1/8) = 8 часов время опустошения - 1/у = 1/(1/6) = 6 часов