Дана функция f(x)=корень из -x^2+8x-7 найдите: а) область определения; б)промежутки возрастания и убывания; в) наибольшее и наименьшее значения функции на отрезке(3; 7)
S против течения - 28 км. S по течению - 16 км. t - 3 часа V течения - 1 км/ч
Составим уравнение.
Пусть Х - скорость в стоячей воде Значит Против теч. = х-1 По теч. = х +1
По формуле t = S : V Состовляем время Протб теч. = 28 / ( х -1 ) По течен. = 16 / ( х +1 )
Ну а теперь скомпануем.
16/( х+1) + 28 / (х-1) = 3 часа ( это всего времени)
Что бы решить надо найти О.З. Это ( х-1) ( х+1) У тройки нет знаменателя поэтому мы должны ему его добавить. Перепеши тот же пример, и просто добавь 3 × ( х+1) × (х -1 ).
Теперь когда у всех есть О.З, мы можем раскрывать скобки и решать.
16х- 16 +28х +28 = 3х^2 - 3
Иксы в одну сторону, без в другую. И получим. 3х^2 - 44 х - 15 =0 Д = 529 , из под корня равно 23 Х1 = 15 ( подх.) х2 = - 1/3 ( неподх.)
A² + b² + 1 ≥ ab + a + b a² + b² + 1 - ab - a - b ≥ 0 Чтобы доказать это неравенство, нужно преобразовать левую часть так, чтобы в ней стояла сумма квадратных двучленов:
0,5a² - a + 0,5 + 0,5b² - b + 0,5 + 0,5a² - ab + 0,5b² ≥ 0
(a - 1)² + (b - 1)² + (a - b)² ≥ 0 Таким образом, неравенство верно при любых a и b, т.к. сумма квадратов любых чисел есть число неотрицательное (большее или равное 0).
1) -x²+8x-7≥0
x²-8x+7≤0
x(1)=1; x(2)=7
(x-1)(x-7)≤0
+ - +
17
D(y): x∈[1;7]
2) y`(x)=(-x²+8x-7)²/(2√(-x²+8x-7)=(-2x+8)\2√(-x²+8x-7)=-2(x-4)/2√(-x²+8x-7)=
=(4-x)√(-x²+8x-7)
y`(x)=0 при х=4
+ -
147
у(х) возрастает у(х) убывает
у(х) возрастает при х∈(1;4)
у(х) убывает при х∈(4;7)
3) х∈[3;7]
y(3)=√(-3²+8*3-7)=√(-9+24-7)=√8=2√2 - наиболшее значение
y(4)=√(-4²+8*4-7)=√(-16+24-7)=√1=1
y(7)=√-7²+8*7-7)=√(-49+56-7)=√0=0 - наименьшее значение