На полке стоят книжные тома в таком порядке: 1; 2; 6; 10; 3; 8; 4; 7; 9; 5.расставте по порядку ,но брать можно только по 2 соседних тома и ставить их вместе на другое место не разъединяя.выполните переставив только три пары
Дана функция у = (-1/3)x^3+x^2. 1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет. 2-Выяснить является ли чётной или нечётной. Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x). Итак, проверяем: f(-x) = (-1/3)x³ + x² = (1/3)x³ + x² - Нет -f(-x) = -((-1/3)x³ + x²) = -((1/3)x³ + x²) = -(1/3)x³ - x² - Нет, значит, функция не является ни чётной, ни нечётной. 3-определить точки пересечения функции с координатными осями . График функции пересекает ось X при f = 0 значит надо решить уравнение: (-1/3)x³+ x² = 0. -x³ + 3x² = 0. -x²(x-3) = 0. Имеем 2 корня: х = 0 и х = 3. График пересекает ось Y, когда x равняется 0: подставляем x = 0 в y = (-1/3)x^3 +x^2. y = (-1/3)0³+0² = 0. Точка: (0, 0) 4-найти критические точки функции. Находим производную и приравниваем её нулю: y' = -x²+2x = -x(x-2). Имеем 2 критические точки: х = 0 и х = 2. 5-определить промежутки монотонности (возрастания,убывания). Исследуем поведение производной вблизи критических точек. х = -0.5 0 0.5 1.5 2 2.5 y'=-x^2+2x -1.25 0 0.75 0.75 0 -1.25 Где производная отрицательна - функция убывает, где положительна - функция возрастает. Возрастает на промежутке [0, 2] Убывает на промежутках (-oo, 0] U [2, oo) 6-определить точки экстремума. Они уже найдены: это 2 критические точки: х = 0 и х = 2. Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции. Минимум функции в точке: x = 0, Максимум функции в точке: х = 2. 7 -определить максимальное и минимальное значение функции. Значения функции в экстремальных точках: х = 2, у = (-1/3)*2³+2² = -8/3 + 4 = 4/3, х = 0, у = 0. 8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба. Найдем точки перегибов, для этого надо решить уравнение d2/dx2f(x)=0(вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции, d2/dx2f(x)= -2х + 2 =-2(x−1)=0 Решаем это уравнение Корни этого ур-ния x1=1 Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках (-oo, 1] Выпуклая на промежутках [1, oo)
Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число. а2=а1+d a3=а1+d+d
a1+а1+d+а1+d+d=18 3a1+3d=18 3*(a1+d)=18 a1+d=18/3 а1+d=6 - второй член арифм. прогрессии также арифм. прогрессию можно записать как: а1+а2+а3=18 а1+а3+6=18 а1+а3=12 а1=12-а3(это наша будущая подстановка) b2=6+3 b2=9 - второй член геометр. прогрессии теперь воспользуемся свойством геометр. прогрессии (bn)^2=b(n-1)*b(n+1) n-1 и n+1 номер члена прогрессии (b2)^2=(a1+1)*(a3+17) 9^2=(a1+1)*(a3+17) 81=(a1+1)*(a3+17) теперь вводим систему: 81=(a1+1)*(a3+17) а1=12-а3 в 1 уравнение подставим второе 81=(12-а3+1)*(a3+17) 81=(13-а3)*(a3+17) пусть а3=х 81=(13-х)*(х+17) 81=13х +221-х^2-17x 81=-x^2-4x+221 x^2+4x-221+81=0 x^2+4x-140=0 по т. виета х1+х2=-4 х1*х2=-140 х1=10 х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая) 10=а3 18=10+6+а1 а1=2 ответ: 2,6,10
пару 4 и 7 ставим между 3 и 8
получится 1 2 6 10 3 4 7 8 9 5
потом пару 6 и 10 ставим после 5
получается 1 2 3 4 7 8 9 5 6 10
и потом уже пару 5 и 6 ставим между 4 и 7
и того 1 2 3 4 5 6 7 8 9 10