М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
PolinaEpifanova
PolinaEpifanova
11.09.2022 14:58 •  Алгебра

Решить уравнение: a^4+2a^3+8a+16=0

👇
Ответ:
ndknmm
ndknmm
11.09.2022

(a^4+2a^3)+(8a+16)=0; a^3*(a+2)+8*(a+2)=0; (a+2)*(a^3+8)=0; a+2=0 или a^3+8=0. a= -2. ответ: a= -2. я так думаю.

4,7(90 оценок)
Ответ:
anastasiyademy1
anastasiyademy1
11.09.2022
Чтобы решить данное уравнение, мы можем использовать метод подстановки, который поможет нам находить корни уравнения.

Шаг 1: Подстановка
Давайте предположим, что a^2 = x. Мы можем использовать это предположение для значительного упрощения уравнения. Подставим a^2 в наше уравнение:
(x^2)^2 + 2(x^2)^1 + 8(x^2)^0 + 16 = 0.

Теперь у нас получается квадратное уравнение:
x^4 + 2x^2 + 8 + 16 = 0.

Шаг 2: Решение квадратного уравнения
Теперь давайте решим это квадратное уравнение. Для решения мы можем ввести новую переменную, например, y = x^2:

y^2 + 2y + 24 = 0.

Теперь у нас получается квадратное уравнение с переменной y. Давайте воспользуемся формулой дискриминанта, чтобы найти корни этого уравнения.

Дискриминант (D) для квадратного уравнения ax^2 + bx + c = 0 вычисляется по формуле D = b^2 - 4ac. В нашем случае a = 1, b = 2 и c = 24.

D = (2)^2 - 4(1)(24)
= 4 - 96
= -92.

Поскольку дискриминант отрицательный, у нашего квадратного уравнения нет действительных корней.

Шаг 3: Возвращение к изначальному уравнению
Мы изначально предположили, что a^2 = x, поэтому x = a^2. Теперь мы можем использовать это для нахождения корней исходного уравнения.

Подставим y = x^2 в формулу, где y = -1 (поскольку у нас нет действительных корней) и найдем значения x:

x = √(-1)
x = ± √ i,

где i - это комплексная единица.

Теперь мы знаем, что x = a^2, поэтому:

a^2 = ± √ i.

Для выражения в комплексной форме, мы можем записать √ i = √ 1 * √ i = 1 * √ i = √ i.

Теперь у нас есть две вариации значений a:

a = ± √(± √ i).

Поэтому решение уравнения a^4 + 2a^3 + 8a + 16 = 0 будет:

a = ± √(± √ i).
4,7(16 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ