1)
1) Умножим обе части. = 3(х-1)-2(х+1)=6
2) Раскроем скобки. = 3х-3-2(х+1)=6 -> 3х-3-2х-2=6
3) Вычислим. = х-3-2=6 -> х-5=6
4) Переносим (-5) вправо. = х=6+5
5) Вычисляем и получаем: х = 11
ответ: х=11
2)
1) Раскроем скобки. = 2-х-2х+х(2)=(х+3)*(х-4) -> 2-х-2х+х(2)=х(2)-4х+3х-12
2) Уберём равные числа. = 2-х-2х=-4х+3х-12
3) Вычислим. = 2-3х=-4х+3х-12 -> 2-3х=-х-12
4) Переносим лишние числа (х) и (2) влево. = -3х+х=-12-2
5) Вычисляем. = -2х=-12-2 -> -2х=-14
6) Разделяем и получаем: х=7
ответ: х = 7
Разбор (2) после х, (2) означает степень.
т.е. Нам предлагают решит систему:
2х² - 7х - 4 = 0
2х² + х ≠0
Решаем каждое а) 2х² - 7х - 4 = 0
D = 81
x1 = 4
x2 = -0,5
б) 2х² + х ≠0
х≠ 0 и х≠-0,5
ответ х = 4
2) = (6 - 2√12 +2)(8 +2√12) = (8 - 2√12)( 8 +2√12) = 64 - 48 = 16
3)Мастеру требуется х дней
ученику требуется х + 5 дней
Мастер в 1 день выполняет 1/х работы
ученик в 1 день выполняет 1/(х + 5) работы
Вместе работая, они выполняют за 1 день 1/х + 1/(х + 5) работы=
=(х + 5 + х)/х(х +5)= (2х + 5)/х(х + 5)
1:(2х + 5)/х(х + 5) =х (х + 5)/(2х +5) дней
х - х(х + 5)/(2х + 5) = 4
4х(2х +5) -х² - 5х = 4(2х + 5)
4х² +20 х - х² - 5х - 8х -20 = 0
3х² + 7 х - 20 = 0
D = 289
x1 = -4 (не подходит по условию задачи)
х2 = 5/3(дней)
ответ : мастер, работая в одиночку, выполнит заказ за 5/3 дня= 1 2/3 дня.