Графиком квадратного трёхчлена является парабола, ветви которой направлены вверх в случае если a > 0 и вниз в случае, если a < 0. Тогда, очевидно, в первом случае наименьшее значение функции достигается в вершине (наибольшего нет) и наоборот, в случае a < 0 наибольшее значение функции достигается в вершине (наименьшего нет) У нас есть функция, зависящая от а и являющаяся квадратным трёхчленом.
И по формулам известно (если вам непонятно откуда они берутся, их вывод можно найти в интернете), что для координат вершины квадратного трёхчлена:
выполняется:
Подставляем коэффициенты в формулы и считаем значение функции.
В первом случае
что является наименьшим значением поскольку a > 0. По полной аналогии для второго примера находите
y³+5y-2y²-10=y³-10
5y-2y²=0
y(5-2y)=0 ⇒ y=0
5-2y=0
y=5/2
2) (y-1)(y²+1)=y³-y²-y
y³+y-y²-1=y³-y²-y
2y=1
y=1/2