S = Vt, где S — расстояние, V — скорость, а t — время.
Итак, рассуждаем. Грузовой автомобиль проехал неизвестное расстояние за 8 часов, двигаясь со скоростью 60км/ч. Значит, чтобы найти расстояние, которое он проехал, необходимо время (8 часов) умножить на скорость (60км/ч). 8ч. × 60км/ч. = 480 километров — расстояние, которое проехал грузовой автомобиль.
Разбираемся с легковой машиной. S = Vt —> t = , где t — время, S — путь, а V — скорость. Расстояние мы вычислили, а скорость легковой машины дана в условии. t = = 4 часа — время, потраченное легковой машиной на путь.
Мы видим, что скорость легковой машины ровно в 2 раза больше скорости грузового автомобиля —> следовательно, легковая машина и проехала это расстояние в 2 раза быстрее, чем грузовой автомобиль. Исходя из выводов, найти время, потраченное легковой машиной на путь, очень просто: необходимо 8 часов разделить на 2, что равно 4 часа.
Монотонность - это промежутки, на которых функция возрастает или убывает. Если функция в данной точке возрастает, то производная в этой точке положительна. Если функция убывает, то производная убывает. Экстремумы - это все максимумы и минимумы, просто обобщенное название. В точках экстремумов производная равна 0. Максимумы и минимумы - понятно. Что значит "отдельное значение в точках", я не понял. Кроме всего этого есть еще точки перегиба, в которых вторая производная равна 0. Иногда эти точки бывают обычными, в которых функция возрастает или убывает. А еще бывают критическими (в них первая производная тоже равна 0). Например, в функции y = x^3 точка x = 0 является одновременно и критической (y' = 3x^2 = 0) и перегибом (y'' = 6x = 0), но ни максимума, ни минимума в этой точке нет - функция строго возрастает.
Пусть стакан стоит Х руб, тогда подстаканник стоит 6 * Х руб.
Получаем уравнение
Х + 6 * Х = 7 * Х = 28 , откуда Х = 28 / 7 = 4
Итак, стакан стоит 4 рубля, а подстаканник 6 * 4 = 24 рубля