Пусть Х км/ч - собственная скорость катера, а У км/ч скорость реки. Скорость катера по течению составляет (х+у) км/ч, а скорость катера против течения - (х-у) км/ч. За 2 часа по озеру катер проплывает 2х км, а плот за 15 часов проплывает по реке 15у км. Эти расстояния равны между собой. Против течения реки за 6 часов катер х-у) км, а по течению за 4 часа - 4(х+у). Разница между расстоянием против течения и расстоянием по течению реки составила 6(х-у)-4(х+у) или 10 км. Составим и решим систему уравнений:
2х=15у
6(х-у)-4(х+у)=10
х=15у:2
6х-6у-4х-4у=10
х=7,5у
2х-10у=10
х=7,5у
2*7,5у-10у=10
х=7,5у
15у-10у=10
х=7,5у
5у=10
х=7,5у
у=10:5
х=7,5у
у=2
х=7,5*2
у=2
х=15
у=2
ответ: собственная скорость катера 15 км/ч.
Пусть а - длина, в - ширина прямоугольника. Тогда а+в=20:2=10 см.
Если а+в=10, то в=10-а
По условию (а+2)*(в-2)=16 см², т.е.
(а+2)*(10-а-2)=16
(а+2)*(8-а)=16
8а+16-а²-2а-16=0
-а²+6а=0; а(а-6)=0; а=6.
Если а=6 см, то в=10-6=4 см.
ответ: 6 см, 4 см.