Здесь опять есть нюанс, связанный с тем, что же все-таки мы считаем числителем и знаменателем новой дроби. Если мы новой дробью считаем дробь с числителем 2а+b и знаменателем a(a+b), то такая дробь несократима.
Предположим, противоположное, что 1/a+1/(a+b)=(2а+b)/(a(a+b)) сократима, т.е. 2а+b и a(a+b) делятся на некоторое простое число q. Т.к. q - простое и произведение а(a+b) на него делится, то либо а, либо a+b делится на q. 1) Пусть a делится на q. В силу равенства b=(2a+b)-2a, получаем, что b тоже делится на q, а значит дробь a/b - сократима. Противоречие. 2) Если а+b делится на q, то в силу равенств а=(2a+b)-(a+b) и b=2(a+b)-(2a+b), получаем, что а и b тоже делятся на q и дробь а/b сократима. Противоречие. Таким образом, дробь (2а+b)/(a(a+b)) несократима.
Здесь опять есть нюанс, связанный с тем, что же все-таки мы считаем числителем и знаменателем новой дроби. Если мы новой дробью считаем дробь с числителем 2а+b и знаменателем a(a+b), то такая дробь несократима.
Предположим, противоположное, что 1/a+1/(a+b)=(2а+b)/(a(a+b)) сократима, т.е. 2а+b и a(a+b) делятся на некоторое простое число q. Т.к. q - простое и произведение а(a+b) на него делится, то либо а, либо a+b делится на q. 1) Пусть a делится на q. В силу равенства b=(2a+b)-2a, получаем, что b тоже делится на q, а значит дробь a/b - сократима. Противоречие. 2) Если а+b делится на q, то в силу равенств а=(2a+b)-(a+b) и b=2(a+b)-(2a+b), получаем, что а и b тоже делятся на q и дробь а/b сократима. Противоречие. Таким образом, дробь (2а+b)/(a(a+b)) несократима.
А)2x-3y=-1
x-5y=3
x=3+5y
6+10y-3y=-1
6+7y=-1
7y=-7
y=-1
x=-2
Б)5x+2y=8
2x+7y=-3
2x=-3-7y
x=-3-7y/2
-15-35y/2+2y=8
-15-35y+4y-16=0
-31-31y=0
y=-1
x=2
А)11x+4y=-18
13x-6y=-32
14x-2y=-50
2y=50+14x
y=25+7x
13x-150-42x=-18
29x=+132
x=132/29
y=511/116
Б)5*(x-3y)=2x+27
3*(x-6y)=9y+15
5x-15y=2x+27
3x-18y=9y+15
3x-15y=27
3x-27y=15
13y=13
y=1
3x-15=27
3x=43
x=43/3