М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olmilevskaya1
olmilevskaya1
14.02.2020 15:10 •  Алгебра

Решить системы подстановки а)2x-3y=-1 x-5y=3 б)5x+2y=8 2x+7y=-3 2.методом сложения а)11x+4y=-18 13x-6y=-32 б)5*(x-3y)=2x+27 3*(x-6y)=9y+15

👇
Ответ:
aujqjajqwrh
aujqjajqwrh
14.02.2020

 А)2x-3y=-1
 x-5y=3

x=3+5y

6+10y-3y=-1

6+7y=-1

7y=-7

y=-1

x=-2
Б)5x+2y=8
 2x+7y=-3

2x=-3-7y

x=-3-7y/2

-15-35y/2+2y=8

-15-35y+4y-16=0

-31-31y=0

y=-1

x=2
А)11x+4y=-18
 13x-6y=-32

14x-2y=-50

2y=50+14x

y=25+7x

13x-150-42x=-18

29x=+132

x=132/29

y=511/116
Б)5*(x-3y)=2x+27
 3*(x-6y)=9y+15

5x-15y=2x+27

3x-18y=9y+15

 

3x-15y=27

3x-27y=15

13y=13

y=1

3x-15=27

3x=43

x=43/3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4,7(48 оценок)
Открыть все ответы
Ответ:
spaceman666
spaceman666
14.02.2020
Здесь опять есть нюанс, связанный с тем, что же все-таки мы считаем числителем и знаменателем новой дроби. Если мы новой дробью считаем дробь с числителем 2а+b и знаменателем a(a+b), то такая дробь несократима.

Предположим, противоположное, что 1/a+1/(a+b)=(2а+b)/(a(a+b)) сократима, т.е. 2а+b и a(a+b) делятся на некоторое простое число q.  Т.к. q - простое и произведение а(a+b) на него делится, то либо а, либо a+b делится на q.
1) Пусть a делится на q. В силу равенства b=(2a+b)-2a, получаем, что b тоже делится на q, а значит дробь a/b - сократима. Противоречие.
2) Если а+b делится на q, то в силу равенств
а=(2a+b)-(a+b) и b=2(a+b)-(2a+b), получаем, что а и b тоже делятся на q и дробь а/b сократима. Противоречие. Таким образом, дробь (2а+b)/(a(a+b)) несократима.
4,5(21 оценок)
Ответ:
VERAVERAVERAVERA123
VERAVERAVERAVERA123
14.02.2020
Здесь опять есть нюанс, связанный с тем, что же все-таки мы считаем числителем и знаменателем новой дроби. Если мы новой дробью считаем дробь с числителем 2а+b и знаменателем a(a+b), то такая дробь несократима.

Предположим, противоположное, что 1/a+1/(a+b)=(2а+b)/(a(a+b)) сократима, т.е. 2а+b и a(a+b) делятся на некоторое простое число q.  Т.к. q - простое и произведение а(a+b) на него делится, то либо а, либо a+b делится на q.
1) Пусть a делится на q. В силу равенства b=(2a+b)-2a, получаем, что b тоже делится на q, а значит дробь a/b - сократима. Противоречие.
2) Если а+b делится на q, то в силу равенств
а=(2a+b)-(a+b) и b=2(a+b)-(2a+b), получаем, что а и b тоже делятся на q и дробь а/b сократима. Противоречие. Таким образом, дробь (2а+b)/(a(a+b)) несократима.
4,8(89 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ