М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Яся00000
Яся00000
18.04.2020 17:29 •  Алгебра

Является ли функция y=-1/3x² возрастающей (убывающей) на промежутке 1) [1; 4]; 2) [-4; -2]; 3) [0; 14]?

👇
Открыть все ответы
Ответ:
olga638
olga638
18.04.2020

   А вы знали, что в природе всё не так просто устроено? Давайте посмотрим на количество лепестков у цветов. У ириса три лепестка, у крестовника тринадцать лепестков, у маргаритки их тридцать четыре, а у астры пятьдесят пять или восемьдесят девять. На первый взгляд это самые обычные числа, но давайте посмотрим на них повнимательнее. Несложно заметить, что перед нами ни что иное как числа Фибоначчи.

   Числами Фибоначчи называют последовательность чисел, где каждое следующее число равно сумме двух предыдущих, а первые два - единицы. Посмотрим на первые несколько чисел. Это один, один, два, три, пять, восемь, тринадцать, двадцать один, тридцать четыре, пятьдесят пять, восемьдесят девять и так далее. Действительно, количество лепестков у цветов равно числам Фибоначчи.

   Поэтому природа - это очень удивительная и сложная вещь!

4,6(38 оценок)
Ответ:
miku1368
miku1368
18.04.2020

Дана функция у = (х-1)²/x².

1.Область определения функции. D ∈ R : x ≈ 0.

2. Нули функции. Точки пересечения графика функции с осью ОХ.

График функции пересекает ось X при f = 0.

Значит, надо решить уравнение (х-1)²/x² = 0.

Решаем это уравнение (достаточно приравнять нулю числитель):

(х-1)² = 0, х-1 = 0, х = 1.

Точки пересечения с осью X: (1; 0).

График пересекает ось Y, когда x равняется 0.

Подставляем x = 0 в (x - 1)²/x².

Результат: (0 - 1)²/0² невыполним, значит, график не пересекает ось Оу.

3. Промежутки знакопостоянства функции.

Так как переменная в числителе и знаменателе в квадрате, то функция на всей числовой оси только положительна.

4. Симметрия графика (чётность или нечётность функции).

f(-x) = ((-x) - 1)²/((-x)²) = (x + 1)²/x² ≠ f(x) ≠ -f(-x).

Поэтому функция не чётная и не нечётная.

5. Периодичность графика. Не периодична.

6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - смотри приложение.

7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.

Первая производная: y' = (1/x²)*(2x - 2) - (2/x³)*(x - 1)²

или y' = (2x - 2)/x³.

Находим нули функции. Для этого приравниваем производную к нулю

(достаточно числитель): 2x-2 = 0

Откуда: x1 = 2/2 = 1.

(-∞ ;0) (0; 1) (1; +∞)

f'(x) > 0 f'(x) < 0 f'(x) > 0

функция возрастает функция убывает функция возрастает.

В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.

8. Интервалы выпуклости, точки перегиба.

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции:

\frac{d^{2}}{d x^{2}} f{\left (x \right )} =

Вторая производная

\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right) = 0

Решаем это уравнение

Корни этого ур-ния

x_{1} = \frac{3}{2}

Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:

Точки, где есть неопределённость:

x_{1} = 0.

\lim_{x \to 0^-}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

\lim_{x \to 0^+}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

- пределы равны, значит, пропускаем соответствующую точку.

Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках

(-oo, 3/2]

Выпуклая на промежутках

[3/2, oo)

9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - смотри приложение.

10. Дополнительные точки, позволяющие более точно построить график - даны в приложении.

11. Построение графика функции по проведенному исследованию дан в приложении.

4,7(82 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ