Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
Обозначим скорость грузовика за (х) км/час, тогда двигаясь бы без остановки он потратил время в пути:
80/х час,
а с увеличением скорости грузовик потратил время в пути:
80/(х+10)час,
а так как он потратил в пути меньшее время, так как останавливался на 24мин или 2/5 часа, то составим уравнение:
80/х - 80/(х+10)=2/5
Приведём уравнение к общему знаменателю: (х)*(х+10)*5
5*(х+10)*80 - 5*х*80=х*(х+10)*2
400х+4000-400х=2х²+20х
2х²+20х-4000=0 Сократим это уравнение на 2
х²+10х-2000=0 - приведённое квадратное уравнение
х1,2=-5+-√(25+2000)=-5+-√2025=-5+-45
х1=-5+45=40 (км\час)
х2=-5-45=-50-не соответствует условию задачи
На участке 80 км грузовик двигался со скоростью:
40 + 10=50 (км/час)
ответ: 50км/час