Как считать вот такие штуки? cos (31п/4) sin(27п/4) cos(15п/2) sin(20п/3) и подобные . мне нужно алгоритм понять, поэтому с решением. можно на примере первых двух разобрать. хочу научиться
Это всё в книге твоей должно быть написано полностью и вполне понятно.. ну ладно) это основывается на периодичности и чётности тригонометрических функций. посмотри на картинку, там немного объясняется. ну вот, у тебя есть cos (31П/4). зная, что cos - это периодичная функция, значит, что через каждые 360 градусов (каждые 2П периода) значение cos A не изменяется, то есть cos(A+2П)=cosA. значит, наш угол (31П/4) мы должны расписать, как: (28П/4 + 3П/4)=(7П + 3П/4) = (6П + П + 3П/4) тогда: cos(6П + П + 3П/4) = cos(П+3П/4)= -cos(3П/4)= 0. следующий: sin(27П/4)=sin(24П/4 + 3П/4)=sin(6П+3П/4)=sin(3П/4)=-1. если коротко, то все 2П, 4П, 6П... 100П и т.д мы просто убираем (не учитываем).
Cos(5*x) = 0 5*x = acos(0) + pi*n, или 5*x = pi/2 + pi*n, где n - любое целое число разделим обе части полученного ур-ния на 5 получим ответ: x = (pi/2 + pi*n)/5 sin4x=0 4*x = asin(0) + 2*pi*n, или 4*x = 2*pi*n разделим обе части полученного ур-ния на 4 получим ответ: x = pi*n/2 sinx/2=0 x/2 = asin(0) + 2*pi*n, или x/2 = 2*pi*n разделим обе части полученного ур-ния на 1/2 получим ответ: x = 4*pi*n cosx/3=0 x/3 = acos(0) + pi*n, или x/3 = pi/2 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/2 + pi*n) sin(3x+п/4)=0 3*x + pi/4 = asin(0) + 2*pi*n, или 3*x + pi/4 = 2*pi*n перенесём pi/4 в правую часть ур-ния с противоположным знаком, итого: 3*x = -pi/4 + 2*pi*n разделим обе части полученного ур-ния на 3 получим ответ: x = (-pi/4 + 2*pi*n)/3 cos(8x+п/3)=0 8*x + pi/3 = acos(0) + pi*n, или 8*x + pi/3 = pi/2 + pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: 8*x = pi/6 + pi*n разделим обе части полученного ур-ния на 8 получим ответ: x = (pi/6 + pi*n)/8 sin(x/7+п/3)=0 x/7 + pi/3 = asin(0) + 2*pi*n, или x/7 + pi/3 = 2*pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: x/7 = -pi/3 + 2*pi*n разделим обе части полученного ур-ния на 1/7 получим ответ: x = 7*(-pi/3 + 2*pi*n) cos(x/3+п/6)=0 x/3 + pi/6 = acos(0) + pi*n, или x/3 + pi/6 = pi/2 + pi*n, где n - любое целое число перенесём pi/6 в правую часть ур-ния с противоположным знаком, итого: x/3 = pi/3 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/3 + pi*n)
Розоцветных -шағасы двудольных сыныбына дегенқарайды . розоцветные- тал-шыбық , бұталар,многолетние шөптер . гүлдер бас олардың түрлі-түрлі.құрт-құмырсқалармен тозаңданады , ал тұқымдарқұстармен , айуанатпен және сумен тарайды . арарозоцветных- басты жеміс - жидектің дақылдарының: яблоня , алмұрт , абрикос , шабдалы , шие және олай бұданәрі . өте алуан оның жемісінің : орешки , земляничиныжәне др . алмалары , қызғылт май жаядай азықтық жәнепарфюмерной өнеркәсіпте қолданылады .
это основывается на периодичности и чётности тригонометрических функций. посмотри на картинку, там немного объясняется.
ну вот, у тебя есть cos (31П/4). зная, что cos - это периодичная функция, значит, что через каждые 360 градусов (каждые 2П периода) значение cos A не изменяется, то есть cos(A+2П)=cosA. значит, наш угол (31П/4) мы должны расписать, как: (28П/4 + 3П/4)=(7П + 3П/4) = (6П + П + 3П/4)
тогда: cos(6П + П + 3П/4) = cos(П+3П/4)= -cos(3П/4)= 0.
следующий:
sin(27П/4)=sin(24П/4 + 3П/4)=sin(6П+3П/4)=sin(3П/4)=-1.
если коротко, то все 2П, 4П, 6П... 100П и т.д мы просто убираем (не учитываем).