Исследование точек экстремума функции проведём по первой производной функции. Первая производная равна y'(x)=3*x²-6*x, её значения равны нулю х1=0 (производная меняет знак с + на минус, так что эта точка - точка локального максимума) х2=2 (производная меняет знак с минуса на =, так что эта точка - точка локального минимума). По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.
Можно попробовать немного скосить отбор подобрав пример как границу:40+40+20=100 Нок 40 . Понятно что наибольшее общее кратное больше самого большего из 3 членов. То если выбрать тройку с наименьшим из всех наибольших из 3 чисел во всех возможных тройках то получим 33,3*3 то есть понятно что наибольшее общее кратное больше 33. то можно 34 35 36 37 38 39 далее рассуждаем так. Если наибольшее общее кратное не равно самому числу То оно хотя бы вдвое больше самого большого из них. Но среди чисел 33 34 35 36 37 38 39 33*2= 66>40 как и другие члены естественно. То есть наибольшее из этих 3 чисел и будет являться их нок. И причем 3 числа не могут быть равны. А другие 2 делители наибольшего числа. Можно моментально отсеять числа 37 35 39 36 38 34 тк наибольшая их возможная сумма при их делителях равна : 37+37+1<100 35+7+7<100 39+13+13<100 36+36+18<100 34+17+17<100 38+38+19=95<100 (на грани :) ) То очевидно что ответ 40 ответ:40