1) Посмотри, какой приём при решении таких уравнений есть. Обозначим tg x/2 = t, тогда Cos x = (1 - t²)/(1 + t²) и Sin x = 2t /(1 + t²) Сделаем замену в нашем уравнении. 5(1 - t²)/(1 + t²) + 12·2t/(1 + t²) = 13 | · (1 + t²)≠0 5(1 - t²) +24 t = 13 + 13 t² 18 t² - 24 t +8 = 0 9t² - 12 t +4 = 0 t = 2/3 tg x/2 = 2/3 х/2 = arc tg 2/3 + πк, где к∈Z x = 2 arc tg 2/3 + 2πк, где к ∈Z 2)3 Cos x - 2 ·2sin x Cos x = 0 Cos x(3 - 4Sin x) = 0 Cos x = 0 или 3 - 4 Sin x = 0 x = π/2 + πr, где к ∈Z 4Sin x = 3 Sin x = 3/4 x = (-1)^k arcSin 3/4 + кπ, где к ∈z
Пусть а1- первый член арифметической прогрессии , d- разность прогрессии. Имеем систему из двух уравнений : а3+а9=6 и а3·а9=135/6 выразим а3 и а9 через первый член и разность прогрессии : а3=а1+2d и a9= a1+8d и подставим в первое уравнение системы , получаем : а1+2d+a1+8d=6 2a1+10d=6 a1+5d=3 a1=3-5d Сделаем подстановку во втором уравнении : (a1+2d)(a1+8d)=6 подставим а1=3-5d и получим (3-5d+2d)(3-5d+8d)=6 (3-3d)(3+3d)=6 9-9d²=6 9d²=3 d²=1/3 d=√1/3=√3/3 или d=-√1|3=√3|3 1) При d=√3/3 а1=3-5·√3/3 По формуле суммы арифметической прогрессии имеем : S15=(2(3-5√3/3)+√3/3·14)/2·15=(9-2√3)·5=45-10√3 2) При d=-√3/3 a1=3+5√3/3 S15=45-10√3
Пусть а1- первый член арифметической прогрессии , d- разность прогрессии. Имеем систему из двух уравнений : а3+а9=6 и а3·а9=135/6 выразим а3 и а9 через первый член и разность прогрессии : а3=а1+2d и a9= a1+8d и подставим в первое уравнение системы , получаем : а1+2d+a1+8d=6 2a1+10d=6 a1+5d=3 a1=3-5d Сделаем подстановку во втором уравнении : (a1+2d)(a1+8d)=6 подставим а1=3-5d и получим (3-5d+2d)(3-5d+8d)=6 (3-3d)(3+3d)=6 9-9d²=6 9d²=3 d²=1/3 d=√1/3=√3/3 или d=-√1|3=√3|3 1) При d=√3/3 а1=3-5·√3/3 По формуле суммы арифметической прогрессии имеем : S15=(2(3-5√3/3)+√3/3·14)/2·15=(9-2√3)·5=45-10√3 2) При d=-√3/3 a1=3+5√3/3 S15=45-10√3
Обозначим tg x/2 = t, тогда Cos x = (1 - t²)/(1 + t²) и
Sin x = 2t /(1 + t²)
Сделаем замену в нашем уравнении.
5(1 - t²)/(1 + t²) + 12·2t/(1 + t²) = 13 | · (1 + t²)≠0
5(1 - t²) +24 t = 13 + 13 t²
18 t² - 24 t +8 = 0
9t² - 12 t +4 = 0
t = 2/3
tg x/2 = 2/3
х/2 = arc tg 2/3 + πк, где к∈Z
x = 2 arc tg 2/3 + 2πк, где к ∈Z
2)3 Cos x - 2 ·2sin x Cos x = 0
Cos x(3 - 4Sin x) = 0
Cos x = 0 или 3 - 4 Sin x = 0
x = π/2 + πr, где к ∈Z 4Sin x = 3
Sin x = 3/4
x = (-1)^k arcSin 3/4 + кπ, где к ∈z