Надо раскрыть знак модуля, пользуясь правилом ІхІ =х, при x >=0 IxI = -x, при x <0
- Если неравенство IxI < b, то оно равносильно двойному неравенству -b< x < b, это при условии, что b положительное, а если b отрицательное или 0, то неравенство не имеет решений. - Если неравенство IxI > b, то переходим к системе неравенств x < - b x > b Это тоже при условии, что b положительное, а если b отрицательное, то решением будут все числа, а если b=0, то решением будут все числа, кроме ноля - Если неравенство Ix-aI + Ix-bI >c, то находим нули подмодульных выражений, разбиваем координатную прямую на промежутки, раскрываем знак модуля на каждом промежутке и решаем полученные неравенства. - Если неравенство Ix -aI > Ix -bI, то можно возвести в квадрат обе части и решить полученное неравенство. - Еще можно по графику смотреть Примеры. 1) I2x + 3I < 5. Переходим к системе -5 < 2x +3 < 5 -5 -3 < 2x < 5 - 3 -8 < 2x < 2 -4 < x < 1 x Є (-4; 1) 2) Ix + 2I < Ix -10I. Возводим в квадрат обе части. x^2 + 4x + 4 < x^2 - 20x + 100 4x + 20x < 100 - 4 24x < 96 x < 4 x Є (- бесконечность; 4)
2) 4y^2 - 9y+48=0 D = 81-768=- 687 действительных корней нет 1) 4y^2 - 25y + 100=0 D = 625-1600, D<0 действительных корней нет 3) из условия знаменателя: х не равен -3 и 1/2. Далее по условию равенства нулю дроби: (x+3)(x-2)=0 x+3=0 или x-2=0 x=-3 x=2 ответ: 2 (так как -3 не подходит по условию знаменателя) 4) Приведем к общему знаменателю: (16(x^2-9)+x^2(x-6)-x^2(x+3))/(x^2(x^2-9)) = 0 x не равен 0, 3 и - 3 16(x^2-9)+x^2(x-6)-x^2(x+3)=0 16x^2-144+x^3-6x^2-x^3-3x^2=0 7x^2=144 x1=12/√7 x2=- 12/√7
При разрезании верёвочки длины 1 на равных частей у кваждой будет длина
Для того, чтобы кусочки верёвочки длины 2 после разрезания были бы такой же длины, т.е. нужно разрезать верёвочку длины 2 на частей.
Значит всего будет частей.
Проще говоря, на сколько бы частей не разрезали эти верёвочки, общее число всех кусочков непременно окажется кратным трём, т.е. должно делиться на три.
Если предлагаются варианты ответов: 6, 8, 9, 12 или 15, то единственным подходящим вариантом будет 8, поскольку:
6 делится на три. 8 не делится на три! Таким число частей не могло оказаться! 9 делится на три. 12 делится на три. 15 делится на три.
ІхІ =х, при x >=0
IxI = -x, при x <0
- Если неравенство IxI < b, то оно равносильно двойному неравенству -b< x < b, это при условии, что b положительное, а если b отрицательное или 0, то неравенство не имеет решений.
- Если неравенство IxI > b, то переходим к системе неравенств
x < - b
x > b
Это тоже при условии, что b положительное, а если b отрицательное, то решением будут все числа, а если b=0, то решением будут все числа, кроме ноля
- Если неравенство Ix-aI + Ix-bI >c, то находим нули подмодульных выражений, разбиваем координатную прямую на промежутки, раскрываем знак модуля на каждом промежутке и решаем полученные неравенства.
- Если неравенство Ix -aI > Ix -bI, то можно возвести в квадрат обе части и решить полученное неравенство.
- Еще можно по графику смотреть
Примеры.
1) I2x + 3I < 5. Переходим к системе
-5 < 2x +3 < 5
-5 -3 < 2x < 5 - 3
-8 < 2x < 2
-4 < x < 1
x Є (-4; 1)
2) Ix + 2I < Ix -10I. Возводим в квадрат обе части.
x^2 + 4x + 4 < x^2 - 20x + 100
4x + 20x < 100 - 4
24x < 96
x < 4
x Є (- бесконечность; 4)