1)y= x² - 4x - 5
Уравнение параболы cо смещённым центром, ветви параболы направлены вверх.
A)Найти координаты вершины параболы:
х₀ = -b/2a = 4/2 = 2
y₀ = 2²-4*2 -5 = 4 - 8 -5 = -9
Координаты вершины (2; -9)
B)Найти точки пересечения параболы с осью Х, нули функции:
y= x² - 4x - 5
x² - 4x - 5 = 0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16+20)/2
х₁,₂ = (4±√36)/2
х₁,₂ = (4±6)/2
х₁ = -1
х₂ = 5
Координаты нулей функции (-1; 0) (5; 0)
C)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: y = -0+0-5= -5
Также такой точкой является свободный член уравнения c = -5
Координата точки пересечения (0; -5)
Д)Ось симметрии = -b/2a X = 4/2 = 2
Е)Для построения графика нужно найти ещё несколько
дополнительных точек:
х= -2 у= 7 ( -2; 7)
х= 0 у= -5 (0; -5)
х= 1 у= -8 (1; -8)
х= 3 у= -8 (3; -8)
х= 4 у= -5 (4; -5)
х= 6 у= 7 (6; 7)
Координаты вершины параболы (2; -9)
Координаты точек пересечения параболы с осью Х: (-1; 0) (5; 0)
Координаты дополнительных точек: (-2; 7) (0; -5) (1; -8) (3; -8) (4; -5) (6; 7)
По найденным точкам строим график параболы.
2)y= 3x² +6x - 9
Уравнение параболы cо смещённым центром, ветви параболы направлены вверх.
A)Найти координаты вершины параболы:
х₀ = -b/2a = -6/6 = -1
y₀ = 3(-1)²+6*(-1) -9 = 3 - 6 -9 = -12
Координаты вершины (-1; -12)
B)Найти точки пересечения параболы с осью Х, нули функции:
y= 3x² +6x - 9
3x² +6x - 9 = 0, квадратное уравнение, ищем корни:
х₁,₂ = (-6±√36+108)/6
х₁,₂ = (-6±√144)/6
х₁,₂ = (-6±12)/6
х₁ = -3
х₂ = 1
Координаты нулей функции (-3; 0) (1; 0)
C)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: y = 0+0-9= -9
Также такой точкой является свободный член уравнения c = -9
Координата точки пересечения (0; -9)
Д)Ось симметрии = -b/2a X = -6/6 = -1
Е)Для построения графика нужно найти ещё несколько
дополнительных точек:
х= -2 у= -9 ( -2; -9)
х= 0 у= -5 (0; -9)
х= 2 у= 15 (2; 15)
х= -4 у= 15 (-4; 15)
По найденным точкам строим график параболы.
5.4) 15 (минут) - за столько времени наполнят бассейн обе трубы, открытые одновременно.
5.2) 15/20, или 3/4.
Объяснение:
5.4 - Первая труба наполнит бассейн за 24 мин, а вторая за 40 мин. За сколько минут наполнится бассейн, если открыть обе эти трубы?
1 - объём бассейна.
1:24=1/24 - часть бассейна заполнит первая труба за 1 минуту.
1:40=1/40 - часть бассейна заполнит вторая труба за 1 минуту.
1/24+1/40=8/120=1/15 - часть бассейна заполнят обе трубы за 1 минуту, открытые одновременно.
1 : 1/15=15 (минут) - за столько времени наполнят бассейн обе трубы, открытые одновременно.
5.2 - Укажите хотя бы одну обыкновенную дробь, большую 0,7, но меньшую 0,8 .
Чтобы определить обыкновенную дробь, которая будет меньше, чем 0,8, и больше, чем 0,7, переведём десятичные дроби 0,7 и 0,8 в обыкновенные дроби.
0,7 = 7/10;
0,8 = 8/10.
Теперь, пользуясь основным свойством дроби, умножим числитель и знаменатель получившихся обыкновенных дробей на число 2.
7/10 = 14/20;
8/10 = 16/20.
Поскольку знаменатели у дробей одинаковые, то для сравнения дробей используем их числители.
14 < 15 < 16.
Дробь с числителем 15 и знаменателем 20 будет удовлетворять условиям задания.
ответ: 15/20, или 3/4.
Второй вариант:
Если добавить ноль к 0,7 и к 0,8 то они не изменятся, и мы получим
0,70 и 0,80, но между ними можно поставить число, например, 0,75.
Но так как в задаче сказано ОБЫКНОВЕННУЮ дробь, переводим
десятичную дробь в обыкновенную, получаем 3/4, (или 15/20).
2)p³+3p-p²+9p-3p²-9+3p-27-p²=p³-5p²+15p-36
3)2a²+4ac+2c²-6ac=2a²-2ac+2c²