Пусть они встретились в точке C( между пунктами A и B). V(A) ⇒ x км /ч ; (Скорость автомобиля выехавший из пункта A обозначаем x км /ч ) AC =V(A)*t =x км/ч* 1ч = x км ; BC =AB -AC =(100 - x) км ; V(B) = BC / t = (100 - x )км /1ч =(100 - x ) км /ч. * * * 0 < x < 100 * * * По условию задачи можем составить уравнение (100 - x ) / x - x /(100 - x ) = 5/60 * * * || BC / V(A) - AC / V(B) = Δ t || * * * ; 12( (100 -x )² - x²) = x(100 -x) ; 12(10000 -200x) =100x - x² ; x² -2500x +120000 =0 ; x =1250 ± √(1250² -120000) = 250 ± √(25²*50² -12*4²25²) =25(50± √2308) ; x₁= 25(50 + √2308) > 100 не решение x₂ = 25(50 - √2308) ≈ 25(50 - 48 ,042 )
НАВЕРНО : Δ t = 50 мин , а не 5 мин тогда : (100 - x) / x - x /(100-x) =50/60 ⇔6(10000 - 200x) =5x(100-x) ; 5x² -1700x +60000 =0 ; x = (170 ± 130) x₁ =170+130 = 300 > 100 не решения x₂ = 170 -130 = 40 (км /ч). ⇒ V(B) = (100 -40) =60 (км /ч) .
Вопрос не очень понятен, но вот все, что произошло с прямоугольником: Стороны были равны n и 6n . После увеличения первой и уменьшения второй первая стала 3*n= 3n, и вторая 6:2n= 3n. то есть получился квадрат со стороной 3n Периметр был (n+6n)*2 =14n, стал 4*3n=12n
Площадь прямоугольника была n*6n =6n^2, а стала 3n*3n=9n^2, то есть площадь увеличилась в полтора раза
Если же вопрос стоит тоько о площажи, то изменеие ее можно посчитать как произведение изменений сторон, то есть S2 = S1*3/2 = 1.5 S1