А) 9^x = 3^(2x) 6^x = (2^x)*(3^x) 2^(2x+1) = 2*2^(2x) 3^(2x) + (2^x)*(3^x) = 2*2^(2x) - разделим обе части на 2^(2x) 1.5^(2x) + 1.5^x = 2, 1.5^(2x) + 1.5^x - 2 = 0 Замена: 1.5^x = t >0 t^2 + t - 2 = 0, D=1+4*2=9 t1 = -2 <0 - не удовл.условию замены t2 = 1 >0 1.5^x = 1, x=0 б) Разделим обе части уравнения на 5^(2x+4): (2^7 * 2^(2x)) / (5^(2x) * 5^4) + 1 + ( 2^(2x) * 2^x * 2^(-5)) / (5^(2x) * 5^4) = 0 (128/625) * 0.4^(2x) + (1/20000)*2^x * 0.4^(2x) = -1 В б) вы уверенны, что условие ВЕРНО записали? Потому что если в последней степени вместо 3х должно быть 2х - то решение было бы аналогично первой задачи. Осталось бы сделать замену и решить квадратное уравнение.
Например, 154 = 11*14 Сумма квадратов 1 + 25 + 16 = 42 - делится на 3, но не делится на 9. Или 847 = 11*77 8^2 + 4^2 + 7^2 = 64 + 16 + 49 = 129 - делится на 3, но не делится на 9. Нашел простым подбором, это было нетрудно. А вот найти все решения через решение уравнений - трудно. Если число 100a + 10b + c, то должна выполняться одна из систем: { a + c = b { a^2 + b^2 + c^2 = 9k + 3 ИЛИ { a + c = b { a^2 + b^2 + c^2 = 9k + 6 ИЛИ { a + c = 11 + b { a^2 + b^2 + c^2 = 9k + 3 ИЛИ { a + c = 11 + b { a^2 + b^2 + c^2 = 9k + 6