При решении таких уравнений надо "снимать знаки модуля" и при этом получать новые, более простые уравнения. каждое подмодульное выражение = 0 при х = 0; 7; 2. Учтём, что |x| ,= x при х ≥ 0 |x| = -x при х < 0 Наша числовая прямая делится нашими числами на 4 промежутка. Получим 4 уравнения. 1) (-∞ ; 0) (*) -х +7 - х -2(х-2) = 4 -х +7 -2х +4 = 4 -3х = -7 х = 7/3 ( не входит в (*)) 2) (0;2) ( **) х -7 +х -2(х-2) = 4 х -7 +х -2х +4 = 4 -х = 7 х = -7 ( не входит в (**)) 3) (2;7) (***) х +7 - х +2(х -2) = 4 х +7 - х +2х -4 = 4 2х = 15 х = 15/2 х = 7,5 ( не входит в (***)) 4) (7;+∞) ( ) х -7 +х + 2(х -2) = 4 х -7 +х +2х -4 = 4 4х = 15 х = 15/4 = 3,75 ( не входит в ()) ответ: нет решений.
B зрительном зале были 320 посадочных мест , с равными количеством в каждом ряду.после того как количество посадочных мест в каждом ряду увеличили на 4 и добавили ещё один ряд ,то количество посадочных мест в зале стало 420.сколько рядов стало в зрительном зале ?
Пусть х мест было в каждом ряду, тогда рядов было 320/х . После увеличения зрительного зала мест стало (х+4) , а рядов 320 / х + 1 . Составляем уравнение по условию задачи: (х+4) * ( 320/х + 1) = 420 (х+4) *(320+х) / х = 420 приводим к общему знаменателю и отбрасываем его заметив, что х≠0 (х+4)(320+х) = 420х 320х+х2+1280+4х-420х=0 х2 -96 х +1280 = 0 Д= 9216 - 4*1280 = 9216 -5120=4096 х(1)=(96+64) / 2 =80 (нереально для кинотеатра, так как в каждом ряду по 4 места) х(2) =(96-64) / 2 =16 320:16 + 1 = 21 ряд стал в новом зрит зале.
1=sin^2x + cos^2xx
2. теперь это все меняем в уравнении
3. cos^2x-sin^2x-^2cosx+sin^2x+cos^2x=0
( сокращаются здесь sin^2x)
4. получаем : 2cos^2x-^2cosx=0
cosx (2cosx-^2)=0
5. cosx=0 : x= П/2+Пn
6. 2cosx-^2=0 ; 2cosx=^2 ; cosx=^2/2
x=+- П/4 + 2Пk