I рабочий за 21 часов и II рабочий за 28 часов
Объяснение:
Объём задания примем за 1. Пусть I рабочий выполнить задание за х часов, и по условию, I рабочий выполнить задание на 7 часов быстрее чем II рабочий, то есть II рабочий выполнить задание за (х+7) часов.
Тогда производительность I рабочего за 1 час будет 1/х часть задания, а производительность II рабочего за 1 час будет 1/(х+7) часть задания. По условию оба рабочих работая вместе выполнили задание за 12 часов, то за 1 час они вместе выполнили 1/12 часть задания. Приравниваем данные за 1 час работы:
1/х + 1/(х+7) = 1/12 | ·12·x·(x+7)
12·(x+7) + 12·x = x·(x+7)
12·x+84+12·x=х²+7·x
х²–17·x–84=0
D= (–17)²–4·1·(–84) = 289+336 = 625 = 25²
х₁=(17+25)/2 = 42/2 = 21 часов время работы I рабочего
х₂=(17–25)/2 = –4<0 не подходит.
Тогда время работы II рабочего равна
21 + 7 = 28 часов.
Производная функции равна:
y'=3x^2-3
Приравниваем производную к нулю:
y'=0
3x^2-3=0
3(x^2-1)=0
x^2-1=0
x1=1
x2=-1
Отмечаем точки x=1 и х=-1на луче. Получаются три интервала: (минус бесконечность; -1], [-1;1] и [1; плюс бесконечность)
Берём любую точку из каждого интервала и подставляем в производную (3x^2-3).
Из интервала (минус бесконечность; -1] возьмём -2.
3*(-2)^2-3=3*4-3=12-3=9
9>0, значит, на этом интервале функция возрастает.
Из интервала [-1;1] возьмём 0.
3*0^2-3=-3
-3<0, значит, на этот отрезке функция убывает.
Из интервала [1; плюс бесконечность) возьмём 2.
3*2^2-3=12-3=9
9>0, значит, функция возрастает.
ответ: на (минус бесконечность; -1] функция возрастает, на [-1;1] убывает и на [1; плюс бесконечность) возрастает.