М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
emilsalimov
emilsalimov
11.02.2022 13:33 •  Алгебра

Сократите дробь ((3x)^3*x^-9)/(x^-10*2x^4)

👇
Ответ:
pliza1706
pliza1706
11.02.2022
\frac{(3x)^3*x^{-9}}{x^{-10}*2x^4}=\frac{(3x)^3}{x^9*\frac{2x^4}{x^{10}}}=\frac{(3x)^3x^{10}}{2x^9x^4}=\frac{(3x)^3x^{10-4-9}}{2}=\frac{(3x)^3x^{-3}}{2}=

=\frac{3^3*x^3}{2x^3}=\frac{3^3}{2}=\frac{27}{2}=13\frac{1}{2}

4,6(5 оценок)
Открыть все ответы
Ответ:
ДианочкаР
ДианочкаР
11.02.2022
Число 3 разбилии на три слагаемых, причем второе слагаемое на 25% меньше первого, а третье слагаемое на 1 меньше второго. Найдите первое слагаемое.

тогда

х1=1,6

Пусть Х-первое слагаемое, тогда второе Х-0,25, а третье Х-0,25-1

х2=х1-0,25*х1

3=3

ответ: первое слагаемое равно 1,6

х1-первое слагаемое

х3=1,2-1=0,2

Число 3 разбилии на три слагаемых, причем второе слагаемое на 25% меньше первого, а третье слагаемое на 1 меньше второго. Найдите первое слагаемое.

1,6+1,2+0,2=3

2,5*х1=4

х3-третье слагаемое

Х=1,5-первое слагаемое

х1=4/2,5

х2=1,6-0,25*1,6=1,2

х2-второе слагаемое

Примем

3Х=3+1+0,25+0,25

тогда

Х+Х-0,25+Х-0,25-1=3

проверим

решение

3Х=4,5

х3=х2-1=х1-0,25*х1-1

3*х1-0,5*х1=3+1

х1+х2+х3=3

x1+x1-0,25*х1+х1-0,25*х1-1=3
4,4(77 оценок)
Ответ:
soymapoIina
soymapoIina
11.02.2022
(1) Основное тригонометрическое тождествоsin2(α) + cos2(α) = 1(2) Основное тождество через тангенс и косинус1 + tg^2(\alpha) = \frac{1}{cos^2(\alpha)}1+tg​2​​(α)=​cos​2​​(α)​​1​​(3) Основное тождество через котангенс и синус1 + ctg^2(\alpha) = \frac{1}{sin^2(\alpha)}1+ctg​2​​(α)=​sin​2​​(α)​​1​​(4) Соотношение между тангенсом и котангенсомtg(α)ctg(α) = 1(5) Синус двойного углаsin(2α) = 2sin(α)cos(α)(6) Косинус двойного углаcos(2α) = cos2(α) – sin2(α) = 2cos2(α) – 1 = 1 – 2sin2(α)(7) Тангенс двойного углаtg(2α) =  2tg(α)1 – tg2(α)(8) Котангенс двойного углаctg(2α) =ctg2(α) – 1  2ctg(α)(9) Синус тройного углаsin(3α) = 3sin(α)cos2(α) – sin3(α)(10) Косинус тройного углаcos(3α) = cos3(α) – 3cos(α)sin2(α)(11) Косинус суммы/разностиcos(α±β) = cos(α)cos(β) ∓ sin(α)sin(β)(12) Синус суммы/разностиsin(α±β) = sin(α)cos(β) ± cos(α)sin(β)(13) Тангенс суммы/разностиtg(\alpha\pm\beta) = \frac{tg(\alpha) ~ \pm ~ tg(\beta)}{1 ~ \mp ~ tg(\alpha)tg(\beta)}tg(α±β)=​1 ∓ tg(α)tg(β)​​tg(α) ± tg(β)​​(14) Котангенс суммы/разностиctg(\alpha\pm\beta) = \frac{-1 ~ \pm ~ ctg(\alpha)ctg(\beta)}{ctg(\alpha) ~ \pm ~ ctg(\beta)}ctg(α±β)=​ctg(α) ± ctg(β)​​−1 ± ctg(α)ctg(β)​​(15) Произведение синусовsin(α)sin(β) = ½(cos(α–β) – cos(α+β))(16) Произведение косинусовcos(α)cos(β) = ½(cos(α+β) + cos(α–β))(17) Произведение синуса на косинусsin(α)cos(β) = ½(sin(α+β) + sin(α–β))(18) Сумма/разность синусовsin(α) ± sin(β) = 2sin(½(α±β))cos(½(α∓β))(19) Сумма косинусовcos(α) + cos(β) = 2cos(½(α+β))cos(½(α–β))(20) Разность косинусовcos(α) – cos(β) = –2sin(½(α+β))sin(½(α–β))(21) Сумма/разность тангенсовtg(\alpha) \pm tg(\beta) = \frac{sin(\alpha\pm\beta)}{cos(\alpha)cos(\beta)}tg(α)±tg(β)=​cos(α)cos(β)​​sin(α±β)​​(22) Формула понижения степени синусаsin2(α) = ½(1 – cos(2α))(23) Формула понижения степени косинусаcos2(α) = ½(1 + cos(2α))(24) Сумма/разность синуса и косинусаsin(\alpha) \pm cos(\alpha) = \sqrt{2}sin(\alpha\pm\frac{\pi}{4})sin(α)±cos(α)=√​2​​​sin(α±​4​​π​​)(25) Сумма/разность синуса и косинуса с коэффициентамиAsin(\alpha) \pm Bcos(\alpha) = \sqrt{A^2+B^2}(sin(\alpha \pm arccos(\frac{A}{\sqrt{A^2+B^2}})))Asin(α)±Bcos(α)=√​A​2​​+B​2​​​​​(sin(α±arccos(​)))(26) Основное соотношение арксинуса и арккосинусаarcsin(x) + arccos(x) = π/2(27) Основное соотношение арктангенса и арккотангенсаarctg(x) + arcctg(x) = π/2

Формулы общего вида(1) Формула понижения nй четной степени синусаsin^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} (-1)^{\frac{n}{2}-k} C_{k}^{n}cos((n-2k)\alpha)sin​n​​(α)=​2​n​​​​C​​2​​n​​​n​​​​+​2​n−1​​​​1​​∑​k=0​​2​​n​​−1​​(−1)​​2​​n​​−k​​C​k​n​​cos((n−2k)α)(2) Формула понижения nй четной степени косинусаcos^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} C_{k}^{n}cos((n-2k)\alpha)cos​n​​(α)=​2​n​​​​C​​2​​n​​​n​​​​+​2​n−1​​​​1​​∑​k=0​​2​​n​​−1​​C​k​n​​cos((n−2k)α)(3) Формула понижения nй нечетной степени синусаsin^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} (-1)^{\frac{n-1}{2}-k} C_{k}^{n}sin((n-2k)\alpha)sin​n​​(α)=​2​n−1​​​​1​​∑​k=0​​2​​n−1​​​​(−1)​​2​​n−1​​−k​​C​k​n​​sin((n−2k)α)(4) Формула понижения nй нечетной степени косинусаcos^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} C_{k}^{n}cos((n-2k)\alpha)cos​n​​(α)=​2​n−1​​​​1​​∑​k=0​​2​​n−1​​​​C​k​n​​cos((n−2k)α)
4,7(28 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ