1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
Очень найдите ( sin5α + sinα , если sinα = 1/√5
"решение" : * * * sinα +sinβ =2sin( (α+β)/2 ) *cos( (α - β)/2 ) * * *
sin5α + sinα = 2*sin ( (5α +α)/2 ) *cos ( (5α -α)/2 ) =
2*sin3α*cos2α =2*(3sinα - 4sin³α)* (1 -2sin²α ) = || sinα = 1/√5 || =
=2*(3 /√5 - 4 / 5√5)* (1 - 2* 1/5 ) = 2*( ( 3*5 - 4) / 5√5 )*( (5*1 -2)5 ) =
=2* (11 / 5√5) * (3/5) = 66/25√5 = 66√5 / 125
ответ: 66√5 / 125
* * * P.S. sin3α =sin(2α+α) = sin2α*cosα+ cos2α*sinα =
2sinα*cosα*cosα + (cos²α -sin²α)*sinα =sinα *(2cos²α + cos²α - sin²α) =
sinα *(3cos²α - sin²α) = sinα *( 3(1 -sin²α) - sin²α ) = 3sinα - 4sin³α * * *
(у⁴ + 6у³ + 6у³ + 36у²) + (6у²+5у³)*1 - (12у³-у⁴) =
у⁴ + 6у³ + 6у³ + 36у² + 6у²+5у³ - 12у³+у⁴=
2у⁴ +5у³ + 42у²
2.Разложите на множители :х^3+8=х³+2³=(х+2)(х²-2х+4)
(а-в)²-а² = (а-в-а)(а-в+а)=(-в)(2а-в)
х³+у³+2ху(х+у) = (х+у)(х²-ху+у²) + 2ху(х+у) = (х+у) (х²-ху+у² +2ху)=(х+у) (х²+ху+у²)
3.Представте в виде многочлена :
(в-5)(в-4)-3в(2в-3) =
(в²-4в-5в+20) - (6в²-9в)=
в²-9в+20 - 6в²+9в =
- 5в² +20=
20 - 5в²
3х(х-2)-(х-3)²=
(3х²-6х) - (х-3)(х-3)=
(3х²-6х) - (х²-6х+9)=
3х²-6х - х²+6х-9=
2х² -9
5(а+1)²-10а = 5(а²+2а+1) -10а = 5а²+10а+5 -10а= 5а²+5