точно не знаю, но 4 вроде так
Воспользуемся теоремой Виета, которая гласит, что в квадратном уравнении вида х^2 + bх + с = 0 действует следующее правило: х1+х2=-b (в данном случае b1=-7) х1*х2=с (в данном случае с1=-1) Решение: новое уравнение будет выглядеть так: х^2 + (b2)*х + с2 = 0 найдём b2 и с2: По теореме Виета: Во-первых: 5*х1 + 5*х2 = -b2 = = 5*(х1+х2) = -5*b1 = -5*(-7) = 35 = -b2 следовательно b2= -35 во-вторых: (5*х1)*(5*х2)=с2 25*(х1*х2) = с2 25*с1 = с2 = 25*(-1) = -25 Подставляем в новое уравнение найденные b2 и с2: ответ: х^2-35х-25=0
1) в 1 системе второе уравнение умножаем на -3, получается
-3,6у-2,4х=-5,4 и это уравнение складываем с первым, в результате получается -4,5у=-9; у=2, подставляем, например во второе, получается 2,4+0,8х=1,8; 0,8х=-0,6; х=-0,75
2) во второй системе второе уравнение умножаем на 2, получается
2,6у+1,6х=42,4 и его складываем с первым, получается
5х=47; х=9,4 подставляем во второе, например, получается
1,3у+0,8*9,4=21,2; 1,3у=13,68; у=-10. 68/130 у второго ответ мне не нравится, проверьте правильность написания системы
3x²=1
x=√(1/3)=√3/3
x=-√3/3
2) f '(x)=1/(3∛x⁴)*2x=2x / (3x∛x)=2 / (3∛x)=1
2=3∛x
∛x=2/3
x=8/27