М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vadim12045683777779
Vadim12045683777779
19.10.2022 12:49 •  Алгебра

Решите, , уравнения. подробно. 95 . 1) ах^2+x=a-1 2) ax^2+1=x+a

👇
Ответ:
leralerochka202
leralerochka202
19.10.2022
ax^2+x=a-1
\\\
ax^2+x+1-a=0
Рассмотрим случай когда уравнение не квадратное, то есть а=0:
0+x=0-1
\\\
x=-1
Значит, при а=0, х=-1
Если уравнение квадратное (а≠0), то:
ax^2+x+1-a=0
\\\
D=1^2-4a(1-a)=1-4a+4a^2=(2a-1)^2
Дискриминант неотрицательный, значит уравнение всегда имеет 1 или 2 корня.
Если D=0, то:
(2a-1)^2=0
\\\
2a-1=0
\\\
a= \frac{1}{2}
При а=1/2 исходное уравнение принимает вид:
\frac{1}{2} x^2+x=\frac{1}{2} -1
\\\
 x^2+2x=1 -2
\\\
x^2+2x+1=0
\\\
(x+1)^2=0
\\\
x+1=0
\\\
x=-1
Значит, при а=1/2, х=-1
Если D>0, то:
(2a-1)^2\ \textgreater \ 0 \\\ a\in(-\infty;0)\cup(0; \frac{1}{2} );\cup (\frac{1}{2};+\infty)
\\\
x= \frac{-1\pm(2a-1)}{a} 
\\\
x_1= \frac{-1-(2a-1)}{2a} = \frac{-1-2a+1}{2a} = \frac{-2a}{2a} =-1
\\\
x_2= \frac{-1+(2a-1)}{2a} = \frac{-1+2a-1}{2a} = \frac{2a-2}{2a} = \frac{a-1}{a}
ответ:
при a\in\{0; \frac{1}{2} \} уравнение имеет один корень: х=-1
при a\in(-\infty;0)\cup(0; \frac{1}{2} );\cup (\frac{1}{2};+\infty) уравнение имеет два корня: x₁=-1; x₂=(a-1)/a

ax^2+1=x+a \\\ ax^2-x+1-a=0
Рассмотрим случай когда уравнение не квадратное, то есть а=0:
0+1=x+0 \\\ x=1
Значит, при а=0, х=1
Если уравнение квадратное (а≠0), то:
ax^2-x+1-a=0 \\\ D=(-1)^2-4a(1-a)=1-4a+4a^2=(2a-1)^2
Дискриминант неотрицательный, значит уравнение всегда имеет 1 или 2 корня.
Если D=0, то:
(2a-1)^2=0 \\\ 2a-1=0 \\\ a= \frac{1}{2}
При а=1/2 уравнение имеет один корень::
x= \frac{1+0}{2a} = \frac{1}{2\cdot \frac{1}{2} } =1
Значит, при а=1/2, х=1
Если D>0, то:
(2a-1)^2\ \textgreater \ 0 \\\ a\in(-\infty;0)\cup(0; \frac{1}{2} );\cup (\frac{1}{2};+\infty) \\\ x= \frac{1\pm(2a-1)}{a} \\\ x_1= \frac{1+(2a-1)}{2a} = \frac{1+2a-1}{2a} = \frac{2a}{2a} =1 \\\ x_2= \frac{1-(2a-1)}{2a} = \frac{1-2a+1}{2a} = \frac{2-2a}{2a} = \frac{1-a}{a}
ответ:
при a\in\{0; \frac{1}{2} \} уравнение имеет один корень: х=1
при a\in(-\infty;0)\cup(0; \frac{1}{2} );\cup (\frac{1}{2};+\infty) уравнение имеет два корня: x₁=1; x₂=(1-a)/a
4,4(19 оценок)
Открыть все ответы
Ответ:
Whitestar123
Whitestar123
19.10.2022
(x+2)(x-4)<0

Подробное объяснение:
1) Ищем нули функции:
    первая скобка равна нулю при х=-2
    вторая скобка равна нулю при х=4
2) Рисуем числовую ось и расставляем на ней найденные нули 
    функции - точки  -2 и 4
    (-2)(4)
   Точки рисуем с пустыми кружочками ("выколотые"), т.к.
   неравенство у нас строгое (знак < )

3) Начинаем считать знаки на каждом интервале, начиная
    слева-направо. Для этого берём любую удобную для подсчёта 
    точку из интервала, подставляем её вместо икс  и считаем знак:
    1. х=-100   -100+2 <0   знак минус
                      -100-4 <0   знак минус
      минус*минус=плюс
     Ставим знак плюс в крайний левый интервал
               +
    (-2)(4)
  
  2. аналогично, 
      х=0   0+2 >0  знак плюс
              0-4 <0   знак минус
     плюс*минус=минус
            +                      _
  (-2)(4)

3.  x=100   100+2>0  знак плюс
                  100-4>0  знак плюс
    плюс*плюс=плюс
            +                          -                         +
   (-2)(4)

Итак, знаки на интервалах мы расставили.
Смотрим на знак неравенства: < 0 Значит, нам надо взять 
только те интервалы, где стоят минусы.
В данном случае, такой интервал один (-2;4)
Это и есть ответ.

Теперь краткая запись решения:
(х+2)(х-4)<0
              +                          -                         +
   (-2)(4)

x∈(-2;4)
ответ: (-2;4)
4,7(93 оценок)
Ответ:
sergejkochetko
sergejkochetko
19.10.2022

ответ: 8) n=4 или n=5

Объяснение:

дробь правильная, если числитель меньше знаменателя...

n²-n+15 < 7n+3

n²-8n+12 < 0 корни по т.Виета (2) и (6);

решение "между корнями": n ∈ (2; 6),

т.е. n∈N (по условию) может быть равно: {3; 4; 5}

остальное (сократима ли дробь) проще посчитать...

n=3: \frac{3^{2}-3+15 }{21+3} =\frac{6+15}{24}=\frac{21}{24}=\frac{7}{8} дробь сократима...

n=4: \frac{4^{2}-4+15 }{28+3} =\frac{12+15}{31} дробь НЕсократима (31-простое число))

n=5: \frac{5^{2}-5+15 }{35+3} =\frac{20+15}{38}=\frac{35}{38} дробь НЕсократима...

решение задачи 9) на рисунке...

таких окружностей две...

касание может быть как внутренним, так и внешним...

точки касания окружностей лежат на линии центров...


Алгебра 9 класс. два номера
4,5(40 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ