Подготовка к ЕГЭ
Задать во Войти
АнонимМатематика23 марта 22:16
найдите сумму корней квадратного уравнения х^2-6x+2=0
ответ или решение1
Михайлов Вячеслав
1. Вспомним формулу дискриминанта:
Дискриминант D квадратного трёхчлена a * x2 + b * x + c равен b2 - 4 * a* c.
Корни квадратного уравнения зависят от знака дискриминанта (D):
D > 0 - уравнение имеет 2 различных вещественных корня (х1 = (-b +√D) / (2 * а)), х2 = (-b -√D) / (2 * а));
D = 0 - уравнение имеет 1 корень (х = (-b +√D) / (2 * а));
D < 0 - уравнение не имеет вещественных корней.
2. Найдём дискриминант заданного уравнения:
D = 36 - 4 * 1 *2;
D = 36 - 8;
D = 28.
3. Дискриминант больше 0, значит уравнение имеет два корня:
х1 = (6 +√28) / (2 * 1);
х1 = (6 + 2√7) / 2;
х1 = 3 + √7;
х2 = (6 - √28) / (2 * 1);
х2 = (6 - 2√7) / 2;
х2 = 3 - √7;
4. Найдём сумму корней уравнения:
х1 + х2 = 3 +√7 + 3 -√7 = 6.
ответ: Сумма корней квадратного уравнения равна 6.бъяснение:
Доказать тригонометрическое тождество
√( (1+cosα) / (1-cosα) ) - √( (1 - cosα) / (1+cosα) ) =2ctgα для 0 < α < π/2
решение : * * * освобождение от иррациональности в знаменателе (числителе) дроби * * *
√( (1+cosα) / (1-cosα) ) - √( (1 - cosα) /(1+cosα) ) =
√( (1+cosα)²/ (1-cos²α) ) - √( (1 - cosα)² /(1- cos²α) ) =
√( (1+cosα)² /sin²α ) - √( (1 - cosα)² /sin²α ) =
|| 1+cosα ≥ 0 для любого α , а sinα > 0 т.к. 0 < α < π/2 ||
= (1+cosα) /sinα - (1 - cosα) /sinα = (1+cosα - 1 + cosα) /sinα =2cosα/sinα =
2ctgα .
2
at²=2S
t²= 2S
a
t=√(2S/a)
ответ: а)