1. В задании дана функция y = f(x). Вид данной функции f(x) определен дополнительным равенством f(x) = tgx. По требованию задания докажем равенство f(2 * x + 2 * π) + f(7 * π – 2 * x) = 0. По сути говоря, нам необходимо доказать равенство tg(2 * x + 2 * π) + tg(7 * π – 2 * x) = 0, чем и будем заниматься в дальнейшем. 2. Анализ равенства показывает, что в его левой части имеется сумма двух слагаемых, каждый из которых представляет собой значение тангенс функции для различных углов. Первое слагаемое, после применения переместительного свойства сложения к его аргументу, примет вид tg(2 * π + 2 * х), а формула приведения tg(2 * π + α) = tgα позволит его записать как tg(2 * x). 3. Для преобразования второго слагаемого вспомним о периодичности тангенс функции. Как известно, тангенс функция имеет наименьший положительный период, равный π. Следовательно, из аргумента выражения tg(7 * π – 2 * x) можно отбросить 7 * π. Тогда, tg(7 * π – 2 * x) = tg(-2 * x). Наконец, учитывая нечётность тангенс функции, левая часть доказываемого равенства примет вид: tg(2 * x) + tg(–2 * x) = tg(2 * x) - tg(2 * x) = 0. Что и требовалось доказать.
Выбрать два черных шара можно а два белых шара - По правилу сложения, всего выбрать одноцветных шаров можно
Всего все возможных событий:
Искомая вероятность:
Вероятность того, что первый вынутый шар является черным равна 3/9 = 1/3, и поскольку один шар уже использован, то вероятность того, что второй вынутый шар окажется черным равна 2/8 = 1/4. Поскольку события независимы, то вероятность того, что вынутые два шара окажутся черными равна 1/4*1/3=1/12
Вероятность того, что первый вынутый шар является белым равна 6/9 = 2/3, и поскольку один шар уже использован, то вероятность того, что второй вынутый шар окажется белым равна 5/8. Поскольку события независимы, то вероятность того, что вынутые два шара окажутся белыми равна 2/3*5/8=10/24=5/12
Тогда искомая вероятность по теореме сложения: P = 1/12 + 5/12 = 6/12 = 1/2
ответ: по ординат = -2