1. Сложим системы:
2x = 6
x = 3
Из первого уравнение y=2-x = 3-2 = -1
x=3 y=-1
2. Сложим системы
9x = 18
x = 2
Из второго 4y=8-3x=8-6=2 y=2/4=0,5
x=2 y=0,5 (2; 0,5)
3. Вычтем из первого уравнения второе
4x - 4x - 7y + 5y = 30 - 90
-2y = -60
y= 30
Из первого уравнения 4x = 30 + 7y = 30 + 210 = 240 x=60
x=60 y=30 (60;30)
4. Вычтем второе из первого
3y - 5y = 66 - 22
-2y = 44
y = -22
Из первого 12x = 66 - 3y = 66 + 66 = 132 x=11
x=11 y=-22 x+y=11-22= -11
5. Сложим уравнения
y-4y = 12
-3y = 12 y=-4
Из второго 2x=8+4y=8-16=-8 x=-4
x= -4 y=-4 x/y = 1
А2. В зависимости от четверти знак может быть плюс или минус, синус положителен в первой и второй четвертях
sinα=±√(1-cos²α)=±√(1-1/4)=±√3/2
А 3. tgα=? cosα=-4/5; tg²α=1-(1/cos²α)=1/16/25=9/25; косинус отрицательный во 2 и 3 четвертях, а тангенс во второй и и четвертой.
Если угол второй четверти, то ответ будет отрицателен, если третьей, то положителен. tgα=±3/5
А1. 5²+12²+13², действительно, 25+144=169, треугольник прямоугольный. Вот только в задаче не сказано про угол А, какой это, прямой или острый. Если прямой, то синус его равен 1, косинус нулю, тангенс не существует, а котангенс равен нулю.
Если это острый угол, то синус может быть либо 5/13, либо 12/13, тогда соответственно косинус либо 12/13, либо 5/13, а тангенс в первом случае равен 5/13: 12/13=5/12, котангенс 12/5, а во втором случае наоборот, тангенс равен 12/5, а котангенс 5/12
2)3√1/32
3)3/8