Объяснение:
Задано число:
52*2*
Заметим, что
36 = 4*9, то есть число должно делиться и на 4, и на 9.
1)
Признак делимости на 4:
Число делится на 4, если его запись оканчивается двумя цифрами, образующими число, которое делится на 4 или его запись оканчивается двумя нулями.
Поскольку предпоследняя цифра не равна нулю, то остаются кандидаты:
20; 24 и 28.
2)
Признак делимости на 9:
Число делится на 9, если сумма цифр целого числа делится на 9.
Заметим, что сумма трех цифр нашего числа уже делится на 9:
5+2+2=9 - делится на девять.
Рассмотрим три последние цифры.
*2*
Заметим, что последняя цифра - четная (число должно делиться на 4).
Возможные комбинации:
020 (0+0=0)
128 (1+8=9)
326 (число 26 не делится на 4)
524 (5+4=9)
722 (число 22 не делится на 4)
920 (9+0=9)
Осталось 4 числа:
52020
52128
52524
52920
Квадратный трёхчлен типа ах² + вх + с нельзя разложить на множители, если уравнение ах² + вх + с = 0 не имеет решений.
Проверим, имеют ли решения заданные трёхчлены, находя дискриминант D
1) x²+3x-1
решаем уравнение x²+3x-1 = 0
D = 9 + 4 = 13 (два решения)
2) x²+3x+1
решаем уравнение x²+3x+1 = 0
D = 9 - 4 = 5 (два решения)
3) x²+3x+7
решаем уравнение x²+3x+7 = 0
D = 9 - 28 = -19 (нет решения)
4) x²+6x-13
решаем уравнение x²+6x-13 = 0
D = 36 +52 = 88 (два решения)
ответ: квадратный трёхчлен 3) x²+3x+7 нельзя разложить на линейные множители
а) x² - вторая степень. Не подходит
б)Подходит (x¹)
в)Не подходит(x²)
г)Подходит