ответ:
задать вопрос
войти
октября 16: 24
докажите, что данное уравнение имеет целые корни и найдите их: х^(2)=(√(7−2×√(6))−√(7+2×√()
ответ или решение1
андреева анна
раскроем скобки и решим уравнение, при этом воспользуемся формулами сокращенного умножения:
(a - b)2 = a2 - 2 *a * b + b2.
(a - b)* (а + b) = a2 - b2.
(√(7 - 2 * √6) - √(7 + 2 * √6)) 2 = (√(7 - 2 * √6))2 - 2 * √(7 - 2 * √6) * √(7 + 2 * √6) + √(7 + 2 * √6))2 = 7 - 2 * √6 - 2 * √((7 - 2 * √6) * (7 + 2 * √6)) + 7 + 2 * √6 = 14 - 2 * √((7 - 2 * √6) * (7 + 2 * √6)) = 14 - 2 * √(72 - (2 * √6) 2) = 14 - 2 * √(49 - 4 * 6) = 14 - 2 * √(49 - 24) = 14 - 2 * √25 = 14 - 2 * √52 = 14 - 2 * 5 = 14 - 10 = 4.
следовательно:
х2 = 4.
х = √4.
х1 = 2; х2 = -2.
ответ: уравнение х2 = (√(7 - 2 * √6) - √(7 + 2 * √6)) 2 имеет корни х1 = 2; х2 = -2
объяснение:
Многочлен стандартного вида – это многочлен, каждый член которого является одночленом стандартного вида и который не содержит подобных членов. В них каждый член многочлена записан в стандартном виде, и ему нет подобных.
4х² + 3х - 5х² + x³ = х³ -х² + 3х
2xy ×5y - Зу×х² = 10ху² - 3х²у
-x + 5х² + 3х³ + 4х - х² = 3х³ + 4х² + 3х
2х×4xy² - 8xy - 2y²× 3x² = 8х²у² - 8ху - 6х²у² = 2х²у² - 8ху
m²- 5m + m³ - 4m² + 5m -2m -1 = m³ -2m² + 8m - 1
2х² × 7 ху² -4ху²×(-xy) - 3х × 5х × ху² = 14х³у² - 4х²у³ - 15х³у² = -х³у² - 4х²у³
Р=0,2*0,3=0,06
б) или первый или второй
Р=0,2*0,7+0,8*0,3=0,14+0,24=0,38