М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Usdied
Usdied
06.09.2020 21:26 •  Алгебра

Решить систему lg(x²+y²)=2 log ₂ x-4=log ₂ 3 - log ₂ y

👇
Ответ:
customsto
customsto
06.09.2020
\left \{ {{lg(x^2+y^2)=2} \atop {log_2(x-4)=log_23-log_2y} \right. \\\\ \left \{ {{lg(x^2+y^2)=lg10^2} \atop {log_2(x-4)=log_2( \frac{3}{y} )}} \right. \\\\ \left \{ {{x^2+y^2=100} \atop {x-4= \frac{3}{y} }} \right.\\\\ \left \{ {{( \frac{3}{y}+4)+y^2=100} \atop {x= \frac{3}{y}+4 }} \right. \\\\ \left \{ {{3+4y+y^3-100=0} \atop {x=\frac{3}{y}+4}} \right. \\ \left \{ {{y^3+4y-77=0} \atop {x= \frac{3}{y}+4}} \right. \\ \left \{ {{y_1=-11;y_2=7} \atop {x_1= \frac{41}{11};x_2= \frac{31}{7} }} \right.
4,8(17 оценок)
Открыть все ответы
Ответ:
Gendalf1875
Gendalf1875
06.09.2020

Симплекс метод - это метод последовательного перехода от одного базисного решения (вершины многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).

Симплекс-метод является универсальным методом, которым можно решить любую задачу линейного программирования, в то время, как графический метод пригоден лишь для системы ограничений с двумя переменными.

Перед тем, как перейти к алгоритму симплекс метода, несколько определений.

Всякое неотрицательное решение системы ограничений называется допустимым решением.

Пусть имеется система m ограничений с n переменными (m < n).

Допустимым базисным решением является решение, содержащее m неотрицательных основных (базисных) переменных и n - m неосновных. (небазисных, или свободных) переменных. Неосновные переменные в базисном решении равны нулю, основные же переменные, как правило, отличны от нуля, то есть являются положительными числами.

Любые m переменных системы m линейных уравнений с n переменными называются основными, если определитель из коэффициентов при них отличен от нуля. Тогда остальные n - m переменных называются неосновными (или свободными).

Алгоритм симплекс метода

Шаг 1. Привести задачу линейного программирования к канонической форме. Для этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на - 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").

Шаг 2. Если в полученной системе m уравнений, то m переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.

Шаг 3. Выразить функцию цели через неосновные переменные допустимого базисного решения. Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.

Шаг 4. Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят её в основные. Переход к шагу 2.

Важные условия

Если допустимое базисное решение даёт оптимум линейной формы (критерий оптимальности выполнен), а в выражении линейной формы через неосновные переменные отсутствует хотя бы одна из них, то полученное оптимальное решение - не единственное.

Если в выражении линейной формы имеется неосновная переменная с отрицательным коэффициентом в случае её максимизации (с положительным - в случае минимизации), а во все уравнения системы ограничений этого шага указанная переменная входит также с отрицательными коэффициентами или отсутствует, то линейная форма не ограничена при данной системе ограничений. В этом случае её максимальное (минимальное) значение записывают в виде .

На сайте есть Онлайн калькулятор решения задач линейного программирования симплекс-методом.

4,6(62 оценок)
Ответ:
huilo4
huilo4
06.09.2020

наибольшее значение многочлена равно 5.

Объяснение:

- 9х² + 12х + 1

- (9х² - 12х - 1) = - ((3х)² - 2·3х·2 + 2² - 5) =  -((3х - 2)² - 5) = - (3х - 2)² + 5.

Второе слагаемое 5 неизменно, поэтому наибольшего значения вся сумма достигнет тогда, когда наибольшим будет первое слагаемое - (3х - 2)².

(3х - 2)² ≥ 0 при любом действительном значении х, тогда

- (3х - 2)² ≤ 0, а значит наибольшим его значением является 0.

Получили, что в этом случае сумма будет равной 0 + 5 = 5, и это и есть наибольшее значение многочлена 1+12x-9x².

Рассмотрим функцию у = 1+12x-9x².

Она квадратичная, графиком является парабола. Так как а = - 9, а < 0, то ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы.

х вершины = -b/(2a) = -12/(-18) = 2/3.

у вершины = 1 + 12·2/3 - 9·4/9 = 1 + 8 - 4 = 5.

4,6(7 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ