М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kanat9809
kanat9809
30.10.2020 13:46 •  Алгебра

Зпункту а виїхав велосипедист. одночасно слідом за ним з пункту в, відстань від якого до а 20 км, виїхав мотоцикліст. велосипедист їхав зі швидкістю 12км/год, а мотоцикліст їхав зі швидкістю 16 км/год. на якій відстані від пункту а мотоцикліст дожене велосипедиста

👇
Открыть все ответы
Ответ:
denvolk00
denvolk00
30.10.2020

Определить промежутки монотонности функции, не используя производную функции.

y = (x² - x - 20)² - 18

=================================

Область определения функции  D (y) = R

y = (x² - x - 20)² - 18

Квадратичная функция в квадратичной функции

y = f(z);             z = g(x)

y = z^2-18;\ \ \ \ z=x^2-x-20

Чтобы найти промежутки монотонности квадратичной функции, нужно найти абсциссу вершины параболы.

z=x^2-x-20;\ \ \ x_0=-\dfrac b{2a}=-\dfrac {-1}2=0,5     -  координата вершины

y = z^2-18;       z = 0   -  координата вершины параболы

x^2-x-20=0\\(x-5)(x+4)=0

x₁ = -4;   x₂ = 5   - координаты вершин параболы

Таким образом, есть три точки, которые определяют промежутки монотонности функции   y = (x² - x - 20)² - 18.

x₁ = -4;   x₀ = 0,5;   x₂ = 5

x ∈ (-∞; -4]   -  функция убывает  :   y(-5) > y(-4)

x ∈ [-4; 0,5]   -  функция возрастает :   y(-4) < y(0)

x ∈ [0,5; 5]   -  функция убывает :   y(1) > y(2)

x ∈ [5; +∞)   -  функция возрастает :   y(5) < y(6)

4,7(51 оценок)
Ответ:
krasavitsaasem
krasavitsaasem
30.10.2020
Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4).
Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить.
Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости.
Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости.
Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости.
Для этого составляем определитель:
| x-(-3)  4-(-3)  -1-(-3) |
| y-2      -1-2    5-2      | = 0
| z-1      2-1     -3-1     |

| x+3  7   2  |
| y-2   -3  3  | = 0
| z-1   1   -4 |

Раскрываем определитель по первому столбцу:
(x+3) × |-3   3| - (y-2) × |7    2| + (z-1) × |7    2| = 0
             |1   -4|               |1  -4|                 |-3  3|
(x+3) × (-3×(-4)-1×3) - (y-2) × (7×(-4)-1×2) + (z-1) × (7×3-(-3)×2) = 0
(x+3) × (12-3) - (y-2) × (-28-2) + (z-1) × (21-(-6) = 0
(x+3) × 9 - (y-2) × (-30) + (z-1) × 27 = 0
9(x+3) +30(y-2) + 27(z-1) = 0
3(x+3) +10(y-2) + 9(z-1) = 0
3x + 9 + 10y - 20 + 9z - 9 = 0
3x + 10y + 9z - 20 = 0 -- искомое уравнение плоскости
4,7(61 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ