ответ:Для того, чтобы найти точки экстремума данной функции нужно найти в каких точках производная равна нулюразделим на 3Значит точки экстремума х=1 и х=-33) Чтобы определить какая из данных точек является точкой максимума, а какая точкой минимума необходимо рассмотреть значение производной на полученных интервалах___+-+ -3 1Если производная на промежутке принимает положительное значение то функция на данном промежутке возрастает, если отрицательное- то функция убываетЗначит на промежутке (-∞;-3) ∪ (1;+∞) функция возрастаетна промежутке (-3;1) убывает4) если до точки х= -3 функция возрастает а после точки -3 убывает, значит при х= -3 точка максимума функции если до точки х=1 функция убывает, а после точки х=1 возрастает то в точка х=1 точка минимуманайдем значение функции в этих точках
Преобразуем выражение
x³-3x²-x+3=0
х²(х-3)-1*(х-3)=0
Вынесем общий множитель х-3, получим
(х-3)(х²-1)=0
т. к. а²-в²=(а-в) (а+в) , получим
(х-3)(х-1)(х+1)=0
Произведение равно нулю, если один из множителей равен нулю, т. е.
х-3=0 или х-1=0 или х+1=0, отсюда
х=3 или х=1 или х=-1
ответ уравнение имеет три корня 3; 1; -1
решите неравенство -2x²-5x больше либо равно -3
-2x²-5x ≥-3
или -2x²-5x +3≥0
Решим уравнение
-2x²-5x +3=0
Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле
Д=в²-4ас=(-5)²-4*(-2)*3=25+24=49
Корни квадратного уравнения определим по формуле
х1=-в+√Д/2а=5+√49/2*(-2)=5+7/(-4)= 12/(-4)=-3
х2=-в-√Д/2а=5-√49/2*(-2)=5-7/(-4)= -2/(-4)=½
т. е. -2x²-5x +3=(-2)(х-½)(х+3)=(1-2х) (х+3)
Отметим на числовой оси все корни уравнения и определим знак каждого промежутка
-___-3+½-х
у (-4)= (1-2(-4))(-4+3)=(1+8)(-1)=-9<0( знак минус на числовой оси)
у (0)= (1-2*0)(0+3)=1*3=3>0( знак плюс на числовой оси)
у (1)= (1-2*1)(1+3)=(-1)*4=-4<0( знак минус на числовой оси)
Неравенство -2x²-5x +3≥0имеет смысл, согласно числовой оси, если х принадлежит промежутку [-3;½]
Удачи!