Так как учителя запрещают использовать примерное значение корня из 6,то: 1)Берем из данного выражения число с корнем,в нашем случае √6 Помещаем его в границы чисел,из которых извлекается полный квадратный корень,т.е. <√6< 2<√6<3
Теперь надо преобразовать √6 так,чтобы получить исходное выражение,числа слева и справа,конечно же,тоже будут меняться.
2)Умножим всё на 5 10<5√6<15
3)прибавляем 1 11<5√6+1<16 ответ: число 5√6 +1 расположено между числами 11 и 16. ------------------------------- (√11+1) в квадрате =11+2√11+1=2√11+12 Используя ту же схему получаем: 1) <√11< 3<√11<4
2)умножаем на 2 6<2√11<8
3)прибавляем 12 18<2√11+12<20 18<(√11+1) в квадрате<20 ответ: число (√11+1) в квадрате находится между числами 18 и 20
Тут рулят , кажется, если не забыл, формулы привидения. sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный. 2 | 1
3 | 4 схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)= -ctg45°